Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71980
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李泰成
dc.contributor.authorChun-Han Wuen
dc.contributor.author吳俊翰zh_TW
dc.date.accessioned2021-06-17T06:17:36Z-
dc.date.available2023-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-20
dc.identifier.citation[1] Bezard Razavi, “Design of Analog CMOS Integrated Circuits” McGraw-Hill Companies, Inc. 2001.
[2] A. V. D. Ziel, “Noise in Solid-State Devices and Lasers” Proceedings of the IEEE, vol. 58, no. 8, Aug. 1970.
[3] “Practical Guide to Radio-Frequency Analysis and Design” ALL ABOUT CIRCUITS, https://www.allaboutcircuits.com/textbook/radio-frequency-analysis-design.
[4] R. Hejhall, “RF Small Signal Design Using Two-Port Parameters”, Motorola Freescale Semiconductor, Inc. AN215A/D, 1993.
[5] Bezard Razavi, “RF Microelectronics Second Edition”, Pearson Education, Inc. 2011.
[6] K. Hartmann, and M. J. O. Strutt, “Changes of the four noise parameters duo to general changes of linear two port circuits”, IEEE Trans. on Electron Devices., vol. ED-20, no. 10, pp. 874-877, Oct. 1973.
[7] G. Vendelin, A. Pavio, and U. Rohde, “Microwave circuit design using linear and nonlinear techniques”, J.Wiley, 1990, pp.86-88.
[8] S.-S. Lu, H.-W. Chiu, “Authors’ reply to comments on “A 2.17-dB NF 5-GHz-band monolithic CMOS LNA with 10mW power consumption””, IEEE Trans. Microw. Theory Techn., vol. 57, no. 10, pp.2472-2473, Oct. 2009.
[9] V. H. Lee, S.-K. Han, J.-S. Lee, and S.-G. Lee, “Current-reused ultra low power, low noise amplifier+mixer”, IEEE Microw. Wireless Compon. Lett., vol. 19, no. 11, pp. 755–757, May 2009.
[10] S.-S. Lu, H.-W. Chiu, “A 2.17-dB NF 5-GHz-band monolithic CMOS LNA with 10mW power consumption”, IEEE Trans. Microw. Theory Techn., vol. 53, no. 3, pp.813-824, Mar 2005.
[11] A. V. D. Ziel, “Noise in Solid State Devices and Circuits”, New York: Wiley, 1986, pp. 88-90.
[12] T. H. Lee, “The design of CMOS radio-frequency integrated circuit second edition”, Cambridge: Cambridge University Press, 2004, pp. 364-384.
[13] R. A. Pucel, H. A. Haus, and H. Statz, “Signal and noise properties of Gallium arsenide field effect transistors”, Advances in Electronics and Electron Physics, L. Morton, Ed. New York: Academic, 1975, vol. 38, pp. 195-265.
[14] R. A. Pucel, D. J. Masse, and C. F. Krumm, “Noise performance of gallium arsenide field-effect transistors”, IEEE J. Solid-State Circuits, vol. 11, no. SSC-2, pp. 243-255, Apr. 1976.
[15] T. K. Nguyen, C, H. Kim, G. J. Ihm, M. S. Yang, and S. G. Lee, “CMOS low-noise amplifier design optimization techniques”, IEEE Trans. Microw. Theory Techn., vol. 52, no. 5, pp. 1433-1442, May 2004.
[16] Karl B. Niclas, “Noise in Broad-Band GaAs MESFET Amplifiers with Parallel Feedback”, IEEE Trans. Microw. Theory Techn., vol. mtt-30, no. 1, Jan. 1982.
[17] Y. C. Hsiao, C. C. Meng, and C. Yang, “Design Optimization of Single-/Dual-Band FET LNAs Using Noise Transformation Matrix”, IEEE Trans. Microw. Theory Techn., vol. 64, no. 2, pp. 519-532, Feb. 2016.
[18] J. S. Goo, W. Liu, C. H. Choi, K. R. Green, Z. Yu, T. H. Lee, and R. W. Dutton, “The equivalence of van der Ziel and BSIM4 models in modeling the induced gate noise of MOSFETs”, IEEE Electron Devices Meeting 2000. IEDM'00. Technical Digest. International, pp. 811-814, Dec. 2000.
[19] Y.-S. Lin et al., “Analysis and design of a CMOS UWB LNA with dual-RLC-branch wideband input matching network,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 2, pp. 287–296, Feb. 2010.
[20] A. Bevilacqua and A. M. Niknejad, “An ultrawideband CMOS low-noise amplifier for 3.1–10.6-GHz wireless receivers,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2258–2268, Dec. 2004.
[21] Y.-J. Lin, S. S. H. Hsu, J.-D. Lin, and C. Y. Chan, “A 3.1–10.6 GHz ultra-wideband CMOS low noise amplifier with current-reused technique,” IEEE Microw Wireless Compon. Lett., vol. 17, no. 3, pp. 232–234, Mar. 2007.
[22] G. Sapone and G. Palmisano, “A 3–10-GHz low-power CMOS low-noise amplifier for ultra-wideband communication,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 3, pp. 678–686, Mar. 2011.
[23] C.-F. Liao and S.-I. Liu, “A broadband noise-canceling CMOS LNA for 3.1–10.6-GHz UWB receivers,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 329–339, Feb. 2007.
[24] B. Y. Ma et al., “InAs/AlSb HEMT and its application to ultra-lowpower wideband high-gain low-noise amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 12, pp. 4448–4455, Dec. 2006.
[25] G. Moschetti et al., “Cryogenic InAs/AlSb HEMT wideband low-noise IF amplifier for ultra-low-power applications,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 3, pp. 144–146, Mar 2012.
[26] K. W. Kobayashi et al., “Monolithic regulated self-biased HEMT MMIC’s,” IEEE Trans. Microw. Theory Techn., vol. 42, no. 12, pp. 2610–2616, Dec. 1994.
[27] S.-E. Shih et al., “Design and analysis of ultra wideband GaN dual-gate HEMT low-noise amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 12, pp. 3270–3277, Dec. 2009.
[28] Y. C. Hsiao, C. C. Meng, and M. C. Li, “Analysis and Design of Broadband LC-Ladder FET LNAs Using Noise Match Network,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 2, pp. 987-1001, Feb. 2018.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71980-
dc.description.abstract現今之科技逐漸朝著互聯網(IoT)發展,將生活中各種用品智慧化儼然成為一種趨勢,而各種智慧產品則需要靠無線通訊技術將之連結在一起。例如發展了約十年的智慧型手機,以及智慧型手錶、智慧型眼鏡等等,甚至有許多家電產品也已經智慧化,並有智慧型管家來語音控管所有產品。在這波互聯網熱潮中,無線通訊技術的發展顯然越來越重要。
在通訊技術中,所有工程人員無不在解決改善的就是雜訊問題。而影響雜訊品質好壞最大的部分,就是射頻電路(radio frequency)最前端之低雜訊放大器(Low-noise Amplifier),本篇論文主要在研究 LNA 之雜訊,除了一般的研究方法之外,我們使用了一個新的雜訊計算方法,雜訊轉換矩陣(Noise Transformation Matrix),來研究在如何讓 LNA 之雜訊指數(Noise figure)最佳化。並且將此理論套用在 Shunt-Shunt feedback 架構之 LNA 設計上,此種架構的特點在於能達成阻抗匹配的頻率範圍較寬,能應用於寬頻應用的設計上。我們將設計一簡單的電路,並以晶片量測結果來驗證我們推導出來的設計理論。電路使用 pHEMT 0.15um 的製程技術來實現。最後根據此理論,我們進階設計了結合 Shunt-Shunt feedback 架構以及 Source-degenerated inductor 架構之LNA,大幅增加操作頻寬。電路使用 UMC 0.18um 的製程技術來實現。
zh_TW
dc.description.abstractNowadays, the trend of technology has gradually been leaning toward the Internet of things (IoT). Each portable thing will be inevitably connected to internet via wireless communication. In addition to the best-known smart phones, smart watches and smart glasses are also well-developed, even are many appliances, have been intelligent. All smart appliances are now controlled by smart housekeepers, like Google home and Amazon Echo. In this intellectual trend, the development of wireless communication technology is obviously more and more important.
In communications technology, engineering encounters noise problems. The noise is mainly affected by Low Noise Amplifier (LNA), which is the front-end of radio frequency (RF) circuits, thereby this paper will focus on the noise of LNA design. In addition to the general method, this paper uses a new noise calculation Method-the Noise Transformation Matrix-to study how to optimize the noise figure (NF) of the LNA. Then we apply this method to the Shunt-Shunt feedback architecture LNA. The characteristic of this architecture is wide range of frequency for impedance matching, and it can be applied to broadband LNA design. We will design a simple circuit to verify the result which is calculated by Noise Transformation Matrix. The circuit was implemented by using pHEMT 0.15um (P15) process technology. Finally, based on this theory, we will move one more step further as enhancing the design of an LNA which combines the Shunt-Shunt feedback architecture and the Source-degenerated inductor architecture to increase operating bandwidth. The circuit was implemented by using UMC 0.18um (U18) process technology.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:17:36Z (GMT). No. of bitstreams: 1
ntu-107-R05943117-1.pdf: 2078393 bytes, checksum: 45df672aabd360202e60f6e263d8da4b (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xiii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Organization 2
Chapter 2 Basic Background Information 3
2.1 Fundamental of Noise 3
2.1.1 Flicker noise……………………………………………………...5
2.1.2 Thermal noise…………………………………………………….6
2.1.3 Induced gate noise………………………………………………..8
2.2 Impedance Maching 9
2.2.1 S parameters 10
2.2.2 Stability 13
2.3 Linearity 14
2.3.1 P1dB……………………………………………………………..16
2.3.2 IIP3………………………………………………………………18
2.4 Summary 21
Chapter 3 LNA Architectures 23
3.1 The noise optimum impedance/ admittance 23
3.2 Source-degenerated inductor LNA 27
3.2.1 Impedance matching 27
3.2.2 Derivation of Noise parameters 32
3.3 Shunt-Shunt resistor feedback 35
3.3.1 Impedance matching 36
3.3.2 Derivation of Noise parameters 38
Chapter 4 Amplifier Design by Noise Transformation Matrix 40
4.1 Noise Transformation Matrix 40
4.1.1 The Basic Transformation Matrix of Two-port Network 42
4.1.2 Application of local series feedback configuration 44
4.1.3 Application of cascade configuration…………………………...46
4.1.4 Application of shunt-shunt feedback configuration………….….47
4.2 Shunt-resistor feedback LNA Research 49
4.2.1 Calculating the noise parameters contributed by transistor……..50
4.2.2 Calculating the noise parameters contributed by resistor……….52
4.2.3 Combining the noise parameters and noise optimum admittance contributed by transistor and resistor……………………………53
4.2.4 Shunt-resistor feedback LNA implementation………………….54
Chapter 5 Mixed-Architecture Broadband LNA 58
5.1 Impedance matching and S parameters……………………………………..59
5.2 Deriving the noise optimum impedance…………………………………….62
5.2.1 Deriving the n noise transformation matrix of source-degenerated inductor LNA with an input matching gate inductor……………..…….63
5.2.2 Calculating the noise parameters contributed by source-degenerated inductor LNA with an input matching gate inductor in shunt-shunt feedback configuration………………………………………………….65
5.2.3 Calculating the noise parameters contributed by a shunt-resistor in shunt-shunt feedback configuration…………………………..………...66
5.2.4 Deriving the total noise parameters and noise optimum admittance of the mixed-architecture broadband LNA………………….………...…...68
5.3 The simulation results……………………………………………………….70
Chapter 6 Conclusion 74
References……. 75
dc.language.isoen
dc.subject寬頻zh_TW
dc.subject低雜訊放大器zh_TW
dc.subjectShunt-Shunt feedbackzh_TW
dc.subjectNoise Transformation Matrixzh_TW
dc.subjectLow noise Amplifieren
dc.subjectWidebanden
dc.subjectShunt-Shunt feedbacken
dc.subjectNoise Transformation Matrixen
dc.title應用雜訊轉換矩陣設計一雜訊最佳化之混和架構寬頻低雜訊放大器zh_TW
dc.titleUsing Noise Transformation Matrix to Optimize a Mixed-architecture Broadband Low-noise Amplifieren
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee孟慶宗,林宗賢,陳信樹
dc.subject.keyword低雜訊放大器,寬頻,Shunt-Shunt feedback,Noise Transformation Matrix,zh_TW
dc.subject.keywordLow noise Amplifier,Wideband,Shunt-Shunt feedback,Noise Transformation Matrix,en
dc.relation.page80
dc.identifier.doi10.6342/NTU201804060
dc.rights.note有償授權
dc.date.accepted2018-08-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved