請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71979完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉崇傑(Sungkit Yip) | |
| dc.contributor.author | Jung-shen Kao | en |
| dc.contributor.author | 高榮伸 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:17:34Z | - |
| dc.date.available | 2018-08-23 | |
| dc.date.copyright | 2018-08-23 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-20 | |
| dc.identifier.citation | [1] Alexander Altland and Ben D. Simons, ”Condensed matter field theory”, 2nd ed. Cambridge University Press (2010)
[2] Piers Coleman, ”Introduction to Many-body Physics”, Cambridge University Press (2016) [3] E. M. Liftshitz and L. P. Pitaevskii, ”Statistical Physics Part 2” , Pergamon Press, Oxford, England (1980) [4] M. A. Cazalilla and A. M. Rey, ”Ultracold Fermi gases with emergent SU(N) symmetry”, Rep. Progr. Phys. 77, 124401 (2014) [5] M.S. Safronova, D. Budker, D. DeMille, Derek F. Jackson Kimball, A. Dere- vianko, and Charles W. Clark , ”Search for new physics with atoms and molecules”, Rev. Mod. Phys. 90, 025008 (2018) [6] Massimo Inguscio, Leonardo Fallani , ”Atomic Physics: Precise Measure- ments and Ultracold Matter”, Oxford University Press (2013) [7] Anderson M. H., Ensher J. R., Matthews M. R., Wieman C. E. and Cornell E. A., ”Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor ”, Science, 269, 198 (1995) [8] Davis K. B., Mewes M.-O., Andrews M. R., van Druten N. J., Durfee D. S., Kurn D. M. and Ketterle W., ”Bose-Einstein Condensation in a Gas of Sodium Atoms”, Phys. Rev. Lett., 75, 3969 (1995) [9] DeMarco B. and Jin D. S., ”Onset of Fermi Degeneracy in a Trapped Atomic Gas”, Science, 285, 1703 (1999) [10] Feynman R P, Int. J. Theor. Phys. 21 467 (1982) [11] Lee T D, Huang K and Yang C N, Phys. Rev. 106 1135 (1957) [12] T. L. Ho, ”Spinor Bose Condensates in Optical Traps”,Phys. Rev. Lett. 81, 742 (1998) [13] S. K. Yip and T. L. Ho, ”Zero sound modes of dilute Fermi gases with arbi- trary spin”, Phys. Rev. A 59, 4653 (1999) [14] Cheng Chin, Rudolf Grimm, Paul Julienne, and Eite Tiesinga, ”Feshbach resonances in ultracold gases” , Rev. Mod. Phys. 82, 1225 (2010) [15] M. Lewenstein, A. Sanpera, V. Ahufinger, ”Ultracold atoms in optical lattices: Simulating quantum many-body systems”, Oxford univ. press (2012) [16] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008) [17] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 80, 1215 (2008) [18] H. v. Lo ̈hneysen, A. Rosch, M. Vojta, and P. Wo ̈lfle, Rev. Mod. Phys. 79, 1015 (2007) [19] Regal C. A., Greiner M. and Jin D. S., ”Observation of Resonance Conden- sation of Fermionic Atom Pairs”, Phys. Rev. Lett., 92, 040403 (2004) [20] Zwierlein M. W., Stan C. A., Schunck C. H., Raupach S. M. F., Kerman A. J. and Ketterle W., ”Condensation of Pairs of Fermionic Atoms near a Feshbach Resonance”, Phys. Rev. Lett., 92 , 120403 (2004) [21] Q. Chen, J. Stajic, S. Tan K.Levin, ”BCS?BEC crossover: From high tem- perature superconductors to ultracold superfluids”, Physics Reports, 412,1 , 1-88 (2005) [22] Congjun Wu, ”Exotic many-body physics with large-spin Fermi gases”, Physics 3, 92 (2010) [23] Stamper-Kurn D. M., Andrews M. R., Chikkatur A. P., Inouye S., Miesner H.-J., Stenger J. and Ketterle W., ”Optical Confinement of a Bose-Einstein Condensate”, Phys. Rev. Lett., 80, 2027 (1998) [24] S. R. Granade, M. E. Gehm, K. M. O’Hara, and J. E. Thomas, ”All-Optical Production of a Degenerate Fermi Gas”, Phys. Rev. Lett., 88, 120405 (2002) [25] Dan M. Stamper-Kurn, Masahito Ueda, ”Spinor Bose gases: Symmetries, magnetism, and quantum dynamics”, Rev. Mod. Phys., 85, 1191, (2013) [26] O’Hara K. M., Hemmer S. L., Gehm M. E., Granade S. R. and Thomas J. E., ”Observation of a Strongly Interacting Degenerate Fermi Gas of Atoms” , Science, 298, 2179 (2002) [27] W. Ketterle and M. W. Zwierlein, ”Making, probing and understanding ultra- cold Fermi gases” , PROCEEDINGS OF THE INTERNATIONAL SCHOOL OF PHYSICS ENRICO FERMI , Societ‘a Italia nadi Fisica [28] Ho, T-L. and Yip, S. ”Pairing of fermions with arbitrary spin”, Phys. Rev. Lett. 82, 247-250 (1999) [29] ZwierleinM.W., Abo-ShaeerJ.R., SchirotzekA., SchunckC.H. and Ketterle W., ”Vortices and Superfluidity in a Strongly Interacting Fermi Gas”, Na- ture, 435, 1047 (2005) [30] G.-B. Jo, Y.-R. Lee, J.-H. Choi, C. A. Christensen, T. H. Kim, J. H. Thywis- sen, D. E. Pritchard, and W. Ketterle, ”Itinerant Ferromagnetism in a Fermi Gas of Ultracold Atoms”, Science 325, 1521 (2009). [31] J. Stenger, S. Inouye, D. M. Stamper-Kurn, H.-J. Miesner, A. P. Chikkatur and W. Ketterle, ”Spin domains in ground-state Bose-Einstein condensates”, Nature volume 396, 345 (1998) [32] S.-K. Yip, ”Theory of a fermionic superfluid with SU (2)×SU (6) symmetry”, Phys. Rev. A 83, 063607 (2011) [33] Wu, C., Hu, J-P. and Zhang, S-C. ”Exact SO(5) symmetry in the spin-3/2 fermionic system”, Phys. Rev. Lett. 91, 186402 (2003) [34] Shou-Cheng Zhang, ”A Unified Theory Based on SO(5) Symmetry of Super- conductivity and Antiferromagnetism”, Science, 275, 5303, 1089 (1997) [35] Honerkamp, C. and Hofstetter, W. ”Ultracold fermions and the SU(N ) Hub- bard model ”, Phys. Rev. Lett. 92, 170403 (2004) [36] John Weiner, ”Cold and Ultracold Collisions in Quantum Microscopic and Mesoscopic Systems” Cambridge University Press (2003) [37] Jo ̈rdens, R., Strohmaier, N., Gu ̈nter, K., Moritz, H. and Esslinger, T. A , ”Mott insulator of fermionic atoms in an optical lattice”. Nature 455, 204207 (2008) [38] Schneider, U. et al. ”Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice”. Science 322, 1520?1525 (2008) [39] Takeshi Fukuhara, Yosuke Takasu, Mitsutaka Kumakura, and Yoshiro Taka- hashi, ”Degenerate Fermi Gases of Ytterbium” , Phys. Rev. Lett. 98, 030401 (2007) [40] B. J. DeSalvo, M. Yan, P. G. Mickelson, Y. N. Martinez de Escobar, and T. C. Killian, ”Degenerate Fermi Gas of 87Sr”, Phys. Rev. Lett. 105, 030402 (2010) [41] S. Taie, Y. Takasu, S. Sugawa, R. Yamazaki, T. Tsujimoto, R. Murakami, and Y. Takahashi, ”Realization of a SU(2) X SU(6) System of Fermions in a Cold Atomic Gas”, Phys. Rev. Lett. 105, 190401 (2010) [42] Meng Khoon Tey, Simon Stellmer, Rudolf Grimm, and Florian Schreck, ”Double-degenerate Bose-Fermi mixture of strontium”, Phys. Rev. A 82, 011608(R) (2010) [43] Simon Stellmer, Rudolf Grimm, and Florian Schreck, ”Detection and manip- ulation of nuclear spin states in fermionic strontium” , Phys Rev A 84, 043611 (2011) [44] M. Foss-Feig, M. Hermele, and A. M. Rey. ”Probing the Kondo lattice model with alkaline-earth-metal atoms” Phys. Rev. A 81, 051603(R) (2010) [45] M. Foss-Feig, M. Hermele, V. Gurarie, and A. M. Rey. ”Heavy fermions in an optical lattice” Phys. Rev. A 82, 053624 (2010) [46] M. Hermele, V. Gurarie, and A. M. Rey. Mott Insulators of Ultracold Fermionic Alkaline Earth Atoms: Underconstrained Magnetism and Chiral Spin Liquid. Phys. Rev. Lett. 103, 135301 (2009) [47] M. Hermele and V. Gurarie. Topological liquids and valence cluster states in two- dimensional SU(N) magnets. Phys. Rev. B 84, 174441 (2011) [48] S. Taie, R. Yamazaki, S. Sugawa, and Y. Takahashi, ”An SU(6) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling”, Nat. Phys. 8, 825 (2012) [49] K. Dieckmann, C. A. Stan, S. Gupta, Z. Hadzibabic, C. H. Schunck, and W. Ketterle, ”Decay of an Ultracold Fermionic Lithium Gas near a Feshbach Resonance” Phys. Rev. Lett. 89, 203201 (2002) [50] Loftus T., Regal C. A., Ticknor C., Bohn J. L. and Jin D. S., ”Resonant Control of Elastic Collisions in an Optically Trapped Fermi Gas of Atoms”, Phys. Rev. Lett., 88, 173201(2002) [51] M. A. Cazalilla, A. F. Ho, and M. Ueda, ”Ultracold gases of ytterbium: ferromagnetism and Mott states in an SU(6) Fermi system”, New J. Phys. 11, 103033 (2009) [52] M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S.Blatt, T. Zanon-Willette, S. M. Foreman, and Jun Ye, ”Nuclear spin effects in optical lattice clocks”, Phys. Rev. A 76, 022510 (2007) [53] Gorshkov A V, Hermele M, Gurarie V, Xu C, Julienne P S,Ye J, Zoller P, Demler E, Lukin M D and Rey A M ”Two-orbital SU (N) magnetism with ultracold alkaline-earth atoms”, Nat. Phys. 6 289 (2010) [54] Kitagawa, M. et al., ”Two-color photoassociation spectroscopy of ytterbium atoms and the precise determinations of s-wave scattering lengths”, Phys. Rev. A 77, 012719 (2008) [55] C. Sanner, E. J. Su, A. Keshet, W. Huang, J. Gillen, R. Gommers, and W. Ketterle, ”Speckle Imaging of Spin Fluctuations in a Strongly Interacting Fermi Gas”, Phys. Rev. Lett. 106, 010402 (2011) [56] J. Meineke, J.-P. Brantut, D. Stadler, T. Mu?ller, H. Moritz, and T. Esslinger, ”Interferometric measurement of local spin fluctuations in a quantum gas”, Nat. Phys. 8, 454 (2012) [57] Yip S-K, Huang B-L and Kao J-S, ”Theory of SU(N) Fermi Liquids”, Phys. Rev. A 89, 043610 (2014) [58] D. Pekker, M. Babadi, R. Sensarma, N. Zinner, L. Pollet, M. W. Zwierlein, and E. Demler , ”Competition between Pairing and Ferromagnetic Instabili- ties in Ultracold Fermi Gases near Feshbach Resonances”, Phys. Rev. Lett., 106, 050402 (2011) [59] Ye-Ryoung Lee, Myoung-Sun Heo, Jae-Hoon Choi, Tout T. Wang, Caleb A. Christensen, Timur M. Rvachov, and Wolfgang Ketterle, ”Compressibility of an ultracold Fermi gas with repulsive interactions”, Phys. Rev. A , 85, 063615 (2012) [60] Christian Sanner, Edward J. Su, Wujie Huang, Aviv Keshet, Jonathon Gillen, and Wolfgang Ketterle, ”Correlations and Pair Formation in a Repulsively Interacting Fermi Gas”, Phys. Rev Lett. 108, 240404 (2012) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71979 | - |
| dc.description.abstract | 藍道費米流體理論在強相關系統中扮演基礎的角色, 他處理了在費米系統的交互作用下如何用某種粒子圖像精準的描述系統行為. 在交互作用存在之下, 此粒子圖像稱為準粒子. 除了點出準粒子的存在, 藍道費米流體理論進一步介紹了準粒子之間的交互作用, 並以此得出費米流體的各種靜態與動態性質, 例如有效質量,磁化率,壓縮率,比熱與聲速等等.
傳統的藍道費米流體是描述具有兩個自旋狀態的費米子, 即自旋二分之一粒子, 我們將之推廣到自旋二分之任意奇數的具有N個自旋狀態的粒子, 並討論其在自旋空間的全對稱之下, 即SU(N)下的形式. 我們將這形式應用到目前已經實現的SU(N)費米氣體, 並利用微擾方法將此系統在零溫時的有效質量,磁化率與壓縮率算至第二階. 發現了在第二階修正下, N大於2時磁化率有了本質上的修正 | zh_TW |
| dc.description.abstract | Landau Fermi Liquid theory describes the repulsively interacting Fermi system by quasiparticles near Fermi surface. It is valid as long as temperature T ≪ TF which is common for electrons in metal. The cold atomic gas brings atom to this regime, and is more flexible. Lots of parameters inaccessible in condensed matter system are released in those low temperature atomic systems. One of the parameters is the enlargement of spin symmetry.
We generalize SU(2) Landau Fermi liquid theory to N-component with SU(N) symmetry and apply it to atomic Fermi gas with SU(N) repulsive interaction at zero temperature. The thermodynamic quantities such as effective mass, compressibility and magnetic susceptibility are derived to second order in kFas. The results depend on N and we see how it deviates from ideal Fermi gas and SU(2) Fermi liquid within and beyond mean field level. We find a drastic modification in second order in kFas for magnetic susceptibility and the Stoner instability of the SU(N) case is discussed. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:17:34Z (GMT). No. of bitstreams: 1 ntu-107-R99222042-1.pdf: 6940660 bytes, checksum: c429c3ee256a0d6721f0beb7ac019eef (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 1 Introduction ....................................................................................................1
1.1 Review of some aspects of cold atom relevant to many-body physics .........3 1.2 Fermi liquids in cold atomic systems ............................................................5 2 Multicomponent physics .................................................................................7 2.1 N-component systems by Neutral Atomic Gas .............................................9 2.1.1 Interaction of N-component atoms ............................................................9 2.2 The emergent SU(N) symmetry .................................................................. 11 2.2.1 Alkaline earth atoms(AEA) ........................................................................13 2.2.2 Experimental realization of SU(N) symmetry by AEA ................................13 2.2.3 Model systems for SU(N) symmetry .........................................................14 3 SU(N) Landau Fermi Liquids............................................................................15 3.1 Landau Quasiparticles ..................................................................................16 3.2 N-component Fermi Liquid Theory ............................................................. 18 3.2.1 SU(N) Fermi liquid - Parametrization and Landau parameters ...................20 3.2.2 deˆ an dnˆ ................................................................................................22 3.2.3 Feedback effect-Landau parameters ........................................................22 3.2.4 Effective mass expressed by Landau parameters..................................... 25 3.3 Response of Fermi liquid to external fields ..................................................30 3.3.1 susceptibility and compressibility at T=0 ..................................................30 3.4 SU(N) Fermi Liquid-Diagonalized in spin space ...........................................33 4 Application of SU(N) Fermi Liquids to Dilute atomic Fermi gas .......................36 4.1 Method ........................................................................................................ 36 4.2 Comments on Itinerant Ferromagnetism ......................................................48 5 Summary .........................................................................................................51 Reference .......................................................................................................... 73 | |
| dc.language.iso | en | |
| dc.subject | 壓縮率 | zh_TW |
| dc.subject | 磁化率 | zh_TW |
| dc.subject | 費米氣體 | zh_TW |
| dc.subject | SU(2) | zh_TW |
| dc.subject | SU(N) | zh_TW |
| dc.subject | 微擾 | zh_TW |
| dc.subject | 準粒子 | zh_TW |
| dc.subject | 藍道費米流體 | zh_TW |
| dc.subject | SU(2) | en |
| dc.subject | Landau Fermi Liquid | en |
| dc.subject | Fermi gas | en |
| dc.subject | compressibility | en |
| dc.subject | susceptibility | en |
| dc.subject | SU(N) | en |
| dc.title | SU(N)費米流體理論 | zh_TW |
| dc.title | Theory of SU(N) Fermi Liquids | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 朱時宜(Shih I Chu),張慶瑞(Ching Ray Chang) | |
| dc.subject.keyword | 藍道費米流體,準粒子,SU(2),SU(N),微擾,磁化率,壓縮率,費米氣體, | zh_TW |
| dc.subject.keyword | Landau Fermi Liquid,SU(2),SU(N),susceptibility,compressibility,Fermi gas, | en |
| dc.relation.page | 79 | |
| dc.identifier.doi | 10.6342/NTU201803566 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-20 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 6.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
