請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71972完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 柯逢春(Ferng-Chun Ke) | |
| dc.contributor.author | Geng-You Liao | en |
| dc.contributor.author | 廖耕佑 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:17:15Z | - |
| dc.date.available | 2020-08-22 | |
| dc.date.copyright | 2018-08-22 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-21 | |
| dc.identifier.citation | Abraham, R.T. (2004). PI 3-kinase related kinases: 'big' players in stress-induced signaling pathways. DNA Repair (Amst) 3, 883-887.
Acin-Perez, R., Salazar, E., Kamenetsky, M., Buck, J., Levin, L.R., and Manfredi, G. (2009). Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell Metab 9, 265-276. Agarwal, S.R., Clancy, C.E., and Harvey, R.D. (2016). Mechanisms Restricting Diffusion of Intracellular cAMP. Sci Rep 6, 19577. Alcorta, D.A., Xiong, Y., Phelps, D., Hannon, G., Beach, D., and Barrett, J.C. (1996). Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci U S A 93, 13742-13747. Almeida, A., Bolanos, J.P., and Moncada, S. (2010). E3 ubiquitin ligase APC/C-Cdh1 accounts for the Warburg effect by linking glycolysis to cell proliferation. Proc Natl Acad Sci U S A 107, 738-741. Appenzeller-Herzog, C., and Hall, M.N. (2012). Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling. Trends in cell biology 22, 274-282. Appukuttan, A., Kasseckert, S.A., Micoogullari, M., Flacke, J.P., Kumar, S., Woste, A., Abdallah, Y., Pott, L., Reusch, H.P., and Ladilov, Y. (2012). Type 10 adenylyl cyclase mediates mitochondrial Bax translocation and apoptosis of adult rat cardiomyocytes under simulated ischaemia/reperfusion. Cardiovasc Res 93, 340-349. Bai, X., Ma, D., Liu, A., Shen, X., Wang, Q.J., Liu, Y., and Jiang, Y. (2007). Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38. Science 318, 977-980. Bar-Peled, L., Chantranupong, L., Cherniack, A.D., Chen, W.W., Ottina, K.A., Grabiner, B.C., Spear, E.D., Carter, S.L., Meyerson, M., and Sabatini, D.M. (2013). A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340, 1100-1106. Bar-Peled, L., and Sabatini, D.M. (2014). Regulation of mTORC1 by amino acids. Trends Cell Biol 24, 400-406. Bar-Peled, L., Schweitzer, L.D., Zoncu, R., and Sabatini, D.M. (2012). Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150, 1196-1208. Bauer, D.E., Harris, M.H., Plas, D.R., Lum, J.J., Hammerman, P.S., Rathmell, J.C., Riley, J.L., and Thompson, C.B. (2004). Cytokine stimulation of aerobic glycolysis in hematopoietic cells exceeds proliferative demand. FASEB J 18, 1303-1305. Bauer, D.E., Hatzivassiliou, G., Zhao, F., Andreadis, C., and Thompson, C.B. (2005). ATP citrate lyase is an important component of cell growth and transformation. Oncogene 24, 6314-6322. Beausejour, C.M., Krtolica, A., Galimi, F., Narita, M., Lowe, S.W., Yaswen, P., and Campisi, J. (2003). Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 22, 4212-4222. Beckman, K.B., and Ames, B.N. (1998). Mitochondrial aging: open questions. Annals of the New York Academy of Sciences 854, 118-127. Beene, D.L., and Scott, J.D. (2007). A-kinase anchoring proteins take shape. Curr Opin Cell Biol 19, 192-198. Ben-Porath, I., and Weinberg, R.A. (2005). The signals and pathways activating cellular senescence. The international journal of biochemistry & cell biology 37, 961-976. Bitterman, J.L., Ramos-Espiritu, L., Diaz, A., Levin, L.R., and Buck, J. (2013). Pharmacological distinction between soluble and transmembrane adenylyl cyclases. The Journal of pharmacology and experimental therapeutics 347, 589-598. Bonfils, G., Jaquenoud, M., Bontron, S., Ostrowicz, C., Ungermann, C., and De Virgilio, C. (2012). Leucyl-tRNA synthetase controls TORC1 via the EGO complex. Mol Cell 46, 105-110. Borradaile, N.M., and Pickering, J.G. (2009). Nicotinamide phosphoribosyltransferase imparts human endothelial cells with extended replicative lifespan and enhanced angiogenic capacity in a high glucose environment. Aging cell 8, 100-112. Brand, A., Engelmann, J., and Leibfritz, D. (1992). A 13C NMR study on fluxes into the TCA cycle of neuronal and glial tumor cell lines and primary cells. Biochimie 74, 941-948. Brand, K. (1985). Glutamine and glucose metabolism during thymocyte proliferation. Pathways of glutamine and glutamate metabolism. Biochem J 228, 353-361. Brenner, A.J., Stampfer, M.R., and Aldaz, C.M. (1998). Increased p16 expression with first senescence arrest in human mammary epithelial cells and extended growth capacity with p16 inactivation. Oncogene 17, 199-205. Buck, J., Sinclair, M.L., Schapal, L., Cann, M.J., and Levin, L.R. (1999). Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. Proc Natl Acad Sci U S A 96, 79-84. Cairns, R.A., Iqbal, J., Lemonnier, F., Kucuk, C., de Leval, L., Jais, J.P., Parrens, M., Martin, A., Xerri, L., Brousset, P., et al. (2012). IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma. Blood 119, 1901-1903. Calebiro, D., and Maiellaro, I. (2014). cAMP signaling microdomains and their observation by optical methods. Front Cell Neurosci 8, 350. Campisi, J., Andersen, J.K., Kapahi, P., and Melov, S. (2011). Cellular senescence: a link between cancer and age-related degenerative disease? Seminars in cancer biology 21, 354-359. Cantor, J.R., and Sabatini, D.M. (2012). Cancer cell metabolism: one hallmark, many faces. Cancer Discov 2, 881-898. Carnegie, G.K., Means, C.K., and Scott, J.D. (2009). A-kinase anchoring proteins: from protein complexes to physiology and disease. IUBMB Life 61, 394-406. Carracedo, A., and Pandolfi, P.P. (2008). The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene 27, 5527-5541. Carroll, B., and Dunlop, E.A. (2017). The lysosome: a crucial hub for AMPK and mTORC1 signalling. Biochem J 474, 1453-1466. Castilho, R.M., Squarize, C.H., Chodosh, L.A., Williams, B.O., and Gutkind, J.S. (2009). mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging. Cell Stem Cell 5, 279-289. Catterall, W.A. (2015). Regulation of Cardiac Calcium Channels in the Fight-or-Flight Response. Curr Mol Pharmacol 8, 12-21. Chan, E.Y. (2009). mTORC1 phosphorylates the ULK1-mAtg13-FIP200 autophagy regulatory complex. Sci Signal 2, pe51. Chang, N., Yi, J., Guo, G., Liu, X., Shang, Y., Tong, T., Cui, Q., Zhan, M., Gorospe, M., and Wang, W. (2010). HuR uses AUF1 as a cofactor to promote p16INK4 mRNA decay. Mol Cell Biol 30, 3875-3886. Chen, Q., and Ames, B.N. (1994). Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells. Proceedings of the National Academy of Sciences of the United States of America 91, 4130-4134. Chen, Q., Fischer, A., Reagan, J.D., Yan, L.J., and Ames, B.N. (1995). Oxidative DNA damage and senescence of human diploid fibroblast cells. Proceedings of the National Academy of Sciences of the United States of America 92, 4337-4341. Chen, R., Zou, Y., Mao, D., Sun, D., Gao, G., Shi, J., Liu, X., Zhu, C., Yang, M., Ye, W., et al. (2014a). The general amino acid control pathway regulates mTOR and autophagy during serum/glutamine starvation. J Cell Biol 206, 173-182. Chen, X., Baumlin, N., Buck, J., Levin, L.R., Fregien, N., and Salathe, M. (2014b). A soluble adenylyl cyclase form targets to axonemes and rescues beat regulation in soluble adenylyl cyclase knockout mice. Am J Respir Cell Mol Biol 51, 750-760. Chen, Y., Cann, M.J., Litvin, T.N., Iourgenko, V., Sinclair, M.L., Levin, L.R., and Buck, J. (2000). Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289, 625-628. Childs, B.G., Baker, D.J., Kirkland, J.L., Campisi, J., and van Deursen, J.M. (2014). Senescence and apoptosis: dueling or complementary cell fates? EMBO reports 15, 1139-1153. Chin, R.M., Fu, X., Pai, M.Y., Vergnes, L., Hwang, H., Deng, G., Diep, S., Lomenick, B., Meli, V.S., Monsalve, G.C., et al. (2014). The metabolite alpha-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 510, 397-401. Cook, S.J., and Morley, S.J. (2007). Nutrient-responsive mTOR signalling grows on Sterile ground. Biochem J 403, e1-3. Corradetti, M.N., Inoki, K., Bardeesy, N., DePinho, R.A., and Guan, K.L. (2004). Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev 18, 1533-1538. Corredor, R.G., Trakhtenberg, E.F., Pita-Thomas, W., Jin, X., Hu, Y., and Goldberg, J.L. (2012). Soluble adenylyl cyclase activity is necessary for retinal ganglion cell survival and axon growth. J Neurosci 32, 7734-7744. Curi, R., Newsholme, P., and Newsholme, E.A. (1988). Metabolism of pyruvate by isolated rat mesenteric lymphocytes, lymphocyte mitochondria and isolated mouse macrophages. Biochem J 250, 383-388. Dai, C.X., Gao, Q., Qiu, S.J., Ju, M.J., Cai, M.Y., Xu, Y.F., Zhou, J., Zhang, B.H., and Fan, J. (2009). Hypoxia-inducible factor-1 alpha, in association with inflammation, angiogenesis and MYC, is a critical prognostic factor in patients with HCC after surgery. BMC cancer 9, 418. Daye, D., and Wellen, K.E. (2012). Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis. Semin Cell Dev Biol 23, 362-369. Dazert, E., and Hall, M.N. (2011). mTOR signaling in disease. Curr Opin Cell Biol 23, 744-755. De Rasmo, D., Signorile, A., Santeramo, A., Larizza, M., Lattanzio, P., Capitanio, G., and Papa, S. (2015). Intramitochondrial adenylyl cyclase controls the turnover of nuclear-encoded subunits and activity of mammalian complex I of the respiratory chain. Biochimica et biophysica acta 1853, 183-191. DeBerardinis, R.J., Lum, J.J., Hatzivassiliou, G., and Thompson, C.B. (2008). The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7, 11-20. DeBerardinis, R.J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S., and Thompson, C.B. (2007). Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A 104, 19345-19350. Demetriades, C., Plescher, M., and Teleman, A.A. (2016). Lysosomal recruitment of TSC2 is a universal response to cellular stress. Nat Commun 7, 10662. Denduluri, S.K., Idowu, O., Wang, Z., Liao, Z., Yan, Z., Mohammed, M.K., Ye, J., Wei, Q., Wang, J., Zhao, L., et al. (2015). Insulin-like growth factor (IGF) signaling in tumorigenesis and the development of cancer drug resistance. Genes Dis 2, 13-25. Dessauer, C.W., Watts, V.J., Ostrom, R.S., Conti, M., Dove, S., and Seifert, R. (2017). International Union of Basic and Clinical Pharmacology. CI. Structures and Small Molecule Modulators of Mammalian Adenylyl Cyclases. Pharmacol Rev 69, 93-139. Di Benedetto, G., Scalzotto, E., Mongillo, M., and Pozzan, T. (2013). Mitochondrial Ca(2)(+) uptake induces cyclic AMP generation in the matrix and modulates organelle ATP levels. Cell Metab 17, 965-975. Dibble, C.C., Asara, J.M., and Manning, B.D. (2009). Characterization of Rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1. Mol Cell Biol 29, 5657-5670. Dibble, C.C., Elis, W., Menon, S., Qin, W., Klekota, J., Asara, J.M., Finan, P.M., Kwiatkowski, D.J., Murphy, L.O., and Manning, B.D. (2012). TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell 47, 535-546. Dimri, G.P. (2005). What has senescence got to do with cancer? Cancer Cell 7, 505-512. Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I., Pereira-Smith, O., et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Sciences of the United States of America 92, 9363-9367. Dorr, J.R., Yu, Y., Milanovic, M., Beuster, G., Zasada, C., Dabritz, J.H., Lisec, J., Lenze, D., Gerhardt, A., Schleicher, K., et al. (2013). Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature 501, 421-425. Dowling, R.J., Topisirovic, I., Alain, T., Bidinosti, M., Fonseca, B.D., Petroulakis, E., Wang, X., Larsson, O., Selvaraj, A., Liu, Y., et al. (2010). mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science 328, 1172-1176. Duan, S., and Pagano, M. (2011). Linking metabolism and cell cycle progression via the APC/CCdh1 and SCFbetaTrCP ubiquitin ligases. Proc Natl Acad Sci U S A 108, 20857-20858. Duran, A., Amanchy, R., Linares, J.F., Joshi, J., Abu-Baker, S., Porollo, A., Hansen, M., Moscat, J., and Diaz-Meco, M.T. (2011). p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol Cell 44, 134-146. Duran, R.V., and Hall, M.N. (2012). Glutaminolysis feeds mTORC1. Cell Cycle 11, 4107-4108. Duran, R.V., MacKenzie, E.D., Boulahbel, H., Frezza, C., Heiserich, L., Tardito, S., Bussolati, O., Rocha, S., Hall, M.N., and Gottlieb, E. (2013). HIF-independent role of prolyl hydroxylases in the cellular response to amino acids. Oncogene 32, 4549-4556. Duran, R.V., Oppliger, W., Robitaille, A.M., Heiserich, L., Skendaj, R., Gottlieb, E., and Hall, M.N. (2012). Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell 47, 349-358. Efeyan, A., Zoncu, R., and Sabatini, D.M. (2012). Amino acids and mTORC1: from lysosomes to disease. Trends Mol Med 18, 524-533. Estevez-Garcia, I.O., Cordoba-Gonzalez, V., Lara-Padilla, E., Fuentes-Toledo, A., Falfan-Valencia, R., Campos-Rodriguez, R., and Abarca-Rojano, E. (2014). Glucose and glutamine metabolism control by APC and SCF during the G1-to-S phase transition of the cell cycle. J Physiol Biochem 70, 569-581. Fan, J., Kamphorst, J.J., Mathew, R., Chung, M.K., White, E., Shlomi, T., and Rabinowitz, J.D. (2013). Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Molecular systems biology 9, 712. Fantin, V.R., St-Pierre, J., and Leder, P. (2006). Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9, 425-434. Fingar, D.C., and Blenis, J. (2004). Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23, 3151-3171. Forbes, N.S., Meadows, A.L., Clark, D.S., and Blanch, H.W. (2006). Estradiol stimulates the biosynthetic pathways of breast cancer cells: detection by metabolic flux analysis. Metab Eng 8, 639-652. Frezza, C., Zheng, L., Folger, O., Rajagopalan, K.N., MacKenzie, E.D., Jerby, L., Micaroni, M., Chaneton, B., Adam, J., Hedley, A., et al. (2011). Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature 477, 225-228. Frias, M.A., Thoreen, C.C., Jaffe, J.D., Schroder, W., Sculley, T., Carr, S.A., and Sabatini, D.M. (2006). mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol 16, 1865-1870. Ganley, I.G., Lam du, H., Wang, J., Ding, X., Chen, S., and Jiang, X. (2009). ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284, 12297-12305. Garami, A., Zwartkruis, F.J., Nobukuni, T., Joaquin, M., Roccio, M., Stocker, H., Kozma, S.C., Hafen, E., Bos, J.L., and Thomas, G. (2003). Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 11, 1457-1466. Gillies, R.J., Didier, N., and Denton, M. (1986). Determination of cell number in monolayer cultures. Anal Biochem 159, 109-113. Goto, M., Holgersson, J., Kumagai-Braesch, M., and Korsgren, O. (2006). The ADP/ATP ratio: A novel predictive assay for quality assessment of isolated pancreatic islets. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 6, 2483-2487. Groenewoud, M.J., and Zwartkruis, F.J. (2013). Rheb and Rags come together at the lysosome to activate mTORC1. Biochem Soc Trans 41, 951-955. Guertin, D.A., Stevens, D.M., Thoreen, C.C., Burds, A.A., Kalaany, N.Y., Moffat, J., Brown, M., Fitzgerald, K.J., and Sabatini, D.M. (2006). Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 11, 859-871. Gulati, P., Gaspers, L.D., Dann, S.G., Joaquin, M., Nobukuni, T., Natt, F., Kozma, S.C., Thomas, A.P., and Thomas, G. (2008). Amino acids activate mTOR complex 1 via Ca2+/CaM signaling to hVps34. Cell Metab 7, 456-465. Gwinn, D.M., Shackelford, D.B., Egan, D.F., Mihaylova, M.M., Mery, A., Vasquez, D.S., Turk, B.E., and Shaw, R.J. (2008). AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30, 214-226. Hagiwara, A., Cornu, M., Cybulski, N., Polak, P., Betz, C., Trapani, F., Terracciano, L., Heim, M.H., Ruegg, M.A., and Hall, M.N. (2012). Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab 15, 725-738. Han, J.M., Jeong, S.J., Park, M.C., Kim, G., Kwon, N.H., Kim, H.K., Ha, S.H., Ryu, S.H., and Kim, S. (2012). Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149, 410-424. Hardie, D.G. (2007). AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8, 774-785. Hardie, D.G., Ross, F.A., and Hawley, S.A. (2012). AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13, 251-262. Harrington, L.S., Findlay, G.M., Gray, A., Tolkacheva, T., Wigfield, S., Rebholz, H., Barnett, J., Leslie, N.R., Cheng, S., Shepherd, P.R., et al. (2004). The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol 166, 213-223. Hashizume, O., Ohnishi, S., Mito, T., Shimizu, A., Iashikawa, K., Nakada, K., Soda, M., Mano, H., Togayachi, S., Miyoshi, H., et al. (2015). Epigenetic regulation of the nuclear-coded GCAT and SHMT2 genes confers human age-associated mitochondrial respiration defects. Scientific reports 5, 10434. Hatzivassiliou, G., Zhao, F., Bauer, D.E., Andreadis, C., Shaw, A.N., Dhanak, D., Hingorani, S.R., Tuveson, D.A., and Thompson, C.B. (2005). ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8, 311-321. Hayflick, L. (1965). The Limited in Vitro Lifetime of Human Diploid Cell Strains. Exp Cell Res 37, 614-636. Hayflick, L., and Moorhead, P.S. (1961). The serial cultivation of human diploid cell strains. Exp Cell Res 25, 585-621. Hedeskov, C.J. (1968). Early effects of phytohaemagglutinin on glucose metabolism of normal human lymphocytes. Biochem J 110, 373-380. Helmbold, H., Komm, N., Deppert, W., and Bohn, W. (2009). Rb2/p130 is the dominating pocket protein in the p53-p21 DNA damage response pathway leading to senescence. Oncogene 28, 3456-3467. Ho, C., van der Veer, E., Akawi, O., and Pickering, J.G. (2009). SIRT1 markedly extends replicative lifespan if the NAD+ salvage pathway is enhanced. FEBS letters 583, 3081-3085. Hosokawa, N., Sasaki, T., Iemura, S., Natsume, T., Hara, T., and Mizushima, N. (2009). Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy 5, 973-979. Houslay, M.D. (2010). Underpinning compartmentalised cAMP signalling through targeted cAMP breakdown. Trends Biochem Sci 35, 91-100. Hume, D.A., and Weidemann, M.J. (1979). Role and regulation of glucose metabolism in proliferating cells. J Natl Cancer Inst 62, 3-8. Inoki, K., Li, Y., Xu, T., and Guan, K.L. (2003a). Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17, 1829-1834. Inoki, K., Li, Y., Zhu, T., Wu, J., and Guan, K.L. (2002). TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4, 648-657. Inoki, K., Zhu, T., and Guan, K.L. (2003b). TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577-590. Jacinto, E., Loewith, R., Schmidt, A., Lin, S., Ruegg, M.A., Hall, A., and Hall, M.N. (2004). Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6, 1122-1128. Jacobs, J.J., and de Lange, T. (2004). Significant role for p16INK4a in p53-independent telomere-directed senescence. Curr Biol 14, 2302-2308. Jain, A., Arauz, E., Aggarwal, V., Ikon, N., Chen, J., and Ha, T. (2014). Stoichiometry and assembly of mTOR complexes revealed by single-molecule pulldown. Proc Natl Acad Sci U S A 111, 17833-17838. Jiang, P., Du, W., Mancuso, A., Wellen, K.E., and Yang, X. (2013). Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature 493, 689-693. Jones, R.G., Plas, D.R., Kubek, S., Buzzai, M., Mu, J., Xu, Y., Birnbaum, M.J., and Thompson, C.B. (2005). AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18, 283-293. Julien, L.A., Carriere, A., Moreau, J., and Roux, P.P. (2010). mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling. Molecular and cellular biology 30, 908-921. Kaadige, M.R., Looper, R.E., Kamalanaadhan, S., and Ayer, D.E. (2009). Glutamine-dependent anapleurosis dictates glucose uptake and cell growth by regulating MondoA transcriptional activity. Proceedings of the National Academy of Sciences of the United States of America 106, 14878-14883. Kalender, A., Selvaraj, A., Kim, S.Y., Gulati, P., Brule, S., Viollet, B., Kemp, B.E., Bardeesy, N., Dennis, P., Schlager, J.J., et al. (2010). Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab 11, 390-401. Kalucka, J., Missiaen, R., Georgiadou, M., Schoors, S., Lange, C., De Bock, K., Dewerchin, M., and Carmeliet, P. (2015). Metabolic control of the cell cycle. Cell Cycle 14, 3379-3388. Kaplon, J., Zheng, L., Meissl, K., Chaneton, B., Selivanov, V.A., Mackay, G., van der Burg, S.H., Verdegaal, E.M., Cascante, M., Shlomi, T., et al. (2013). A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 498, 109-112. Kim, D.H., and Sabatini, D.M. (2004). Raptor and mTOR: subunits of a nutrient-sensitive complex. Curr Top Microbiol Immunol 279, 259-270. Kim, D.H., Sarbassov, D.D., Ali, S.M., Latek, R.R., Guntur, K.V., Erdjument-Bromage, H., Tempst, P., and Sabatini, D.M. (2003). GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 11, 895-904. Kim, S.G., Buel, G.R., and Blenis, J. (2013a). Nutrient regulation of the mTOR complex 1 signaling pathway. Mol Cells 35, 463-473. Kim, S.G., Hoffman, G.R., Poulogiannis, G., Buel, G.R., Jang, Y.J., Lee, K.W., Kim, B.Y., Erikson, R.L., Cantley, L.C., Choo, A.Y., et al. (2013b). Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. Mol Cell 49, 172-185. Kleinboelting, S., Diaz, A., Moniot, S., van den Heuvel, J., Weyand, M., Levin, L.R., Buck, J., and Steegborn, C. (2014). Crystal structures of human soluble adenylyl cyclase reveal mechanisms of catalysis and of its activation through bicarbonate. Proc Natl Acad Sci U S A 111, 3727-3732. Koo, J., Wu, X., Mao, Z., Khuri, F.R., and Sun, S.Y. (2015). Rictor Undergoes Glycogen Synthase Kinase 3 (GSK3)-dependent, FBXW7-mediated Ubiquitination and Proteasomal Degradation. J Biol Chem 290, 14120-14129. Kovacina, K.S., Park, G.Y., Bae, S.S., Guzzetta, A.W., Schaefer, E., Birnbaum, M.J., and Roth, R.A. (2003). Identification of a proline-rich Akt substrate as a 14-3-3 binding partner. J Biol Chem 278, 10189-10194. Kujoth, G.C., Hiona, A., Pugh, T.D., Someya, S., Panzer, K., Wohlgemuth, S.E., Hofer, T., Seo, A.Y., Sullivan, R., Jobling, W.A., et al. (2005). Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309, 481-484. Kumar, A., Harris, T.E., Keller, S.R., Choi, K.M., Magnuson, M.A., and Lawrence, J.C., Jr. (2008). Muscle-specific deletion of rictor impairs insulin-stimulated glucose transport and enhances Basal glycogen synthase activity. Mol Cell Biol 28, 61-70. Kumar, S., Kostin, S., Flacke, J.P., Reusch, H.P., and Ladilov, Y. (2009). Soluble adenylyl cyclase controls mitochondria-dependent apoptosis in coronary endothelial cells. J Biol Chem 284, 14760-14768. Langley, E., Pearson, M., Faretta, M., Bauer, U.M., Frye, R.A., Minucci, S., Pelicci, P.G., and Kouzarides, T. (2002). Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. The EMBO journal 21, 2383-2396. Lawless, C., Jurk, D., Gillespie, C.S., Shanley, D., Saretzki, G., von Zglinicki, T., and Passos, J.F. (2012). A stochastic step model of replicative senescence explains ROS production rate in ageing cell populations. PloS one 7, e32117. Le, A., Lane, A.N., Hamaker, M., Bose, S., Gouw, A., Barbi, J., Tsukamoto, T., Rojas, C.J., Slusher, B.S., Zhang, H., et al. (2012). Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell metabolism 15, 110-121. Lee, S.M., Dho, S.H., Ju, S.K., Maeng, J.S., Kim, J.Y., and Kwon, K.S. (2012). Cytosolic malate dehydrogenase regulates senescence in human fibroblasts. Biogerontology 13, 525-536. Liu, P., Guo, J., Gan, W., and Wei, W. (2014). Dual phosphorylation of Sin1 at T86 and T398 negatively regulates mTORC2 complex integrity and activity. Protein & cell 5, 171-177. Long, X., Lin, Y., Ortiz-Vega, S., Yonezawa, K., and Avruch, J. (2005). Rheb binds and regulates the mTOR kinase. Curr Biol 15, 702-713. Lunt, S.Y., and Vander Heiden, M.G. (2011). Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27, 441-464. Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P., and Pandolfi, P.P. (2005). Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121, 179-193. Ma, X.M., and Blenis, J. (2009). Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10, 307-318. Manning, B.D., and Cantley, L.C. (2007). AKT/PKB signaling: navigating downstream. Cell 129, 1261-1274. Manning, B.D., Tee, A.R., Logsdon, M.N., Blenis, J., and Cantley, L.C. (2002). Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10, 151-162. Mashima, T., Seimiya, H., and Tsuruo, T. (2009). De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. Br J Cancer 100, 1369-1372. Mayer, C., Zhao, J., Yuan, X., and Grummt, I. (2004). mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev 18, 423-434. McKnight, G.S. (1991). Cyclic AMP second messenger systems. Curr Opin Cell Biol 3, 213-217. Mendoza, M.C., Er, E.E., and Blenis, J. (2011). The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 36, 320-328. Menon, S., Dibble, C.C., Talbott, G., Hoxhaj, G., Valvezan, A.J., Takahashi, H., Cantley, L.C., and Manning, B.D. (2014). Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 156, 771-785. Milkereit, R., Persaud, A., Vanoaica, L., Guetg, A., Verrey, F., and Rotin, D. (2015). LAPTM4b recruits the LAT1-4F2hc Leu transporter to lysosomes and promotes mTORC1 activation. Nat Commun 6, 7250. Miyauchi, H., Minamino, T., Tateno, K., Kunieda, T., Toko, H., and Komuro, I. (2004). Akt negatively regulates the in vitro lifespan of human endothelial cells via a p53/p21-dependent pathway. EMBO J 23, 212-220. Mohrin, M., and Chen, D. (2016). The mitochondrial metabolic checkpoint and aging of hematopoietic stem cells. Curr Opin Hematol 23, 318-324. Moiseeva, O., Bourdeau, V., Roux, A., Deschenes-Simard, X., and Ferbeyre, G. (2009). Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol Cell Biol 29, 4495-4507. Monterisi, S., and Zaccolo, M. (2017). Components of the mitochondrial cAMP signalosome. Biochem Soc Trans 45, 269-274. Moreno-Sanchez, R., Rodriguez-Enriquez, S., Marin-Hernandez, A., and Saavedra, E. (2007). Energy metabolism in tumor cells. FEBS J 274, 1393-1418. Munyon, W.H., and Merchant, D.J. (1959). The relation between glucose utilization, lactic acid production and utilization and the growth cycle of L strain fibroblasts. Exp Cell Res 17, 490-498. Narita, M., Nunez, S., Heard, E., Narita, M., Lin, A.W., Hearn, S.A., Spector, D.L., Hannon, G.J., and Lowe, S.W. (2003). Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703-716. Neer, E.J. (1978). Physical and functional properties of adenylate cyclase from mature rat testis. J Biol Chem 253, 5808-5812. Nicklin, P., Bergman, P., Zhang, B., Triantafellow, E., Wang, H., Nyfeler, B., Yang, H., Hild, M., Kung, C., Wilson, C., et al. (2009). Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136, 521-534. Nogueira, V., Park, Y., Chen, C.C., Xu, P.Z., Chen, M.L., Tonic, I., Unterman, T., and Hay, N. (2008). Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell 14, 458-470. Nojima, H., Tokunaga, C., Eguchi, S., Oshiro, N., Hidayat, S., Yoshino, K., Hara, K., Tanaka, N., Avruch, J., and Yonezawa, K. (2003). The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J Biol Chem 278, 15461-15464. Oh, W.J., and Jacinto, E. (2011). mTOR complex 2 signaling and functions. Cell Cycle 10, 2305-2316. Parlo, R.A., and Coleman, P.S. (1984). Enhanced rate of citrate export from cholesterol-rich hepatoma mitochondria. The truncated Krebs cycle and other metabolic ramifications of mitochondrial membrane cholesterol. J Biol Chem 259, 9997-10003. Parlo, R.A., and Coleman, P.S. (1986). Continuous pyruvate carbon flux to newly synthesized cholesterol and the suppressed evolution of pyruvate-generated CO2 in tumors: further evidence for a persistent truncated Krebs cycle in hepatomas. Biochim Biophys Acta 886, 169-176. Pearce, L.R., Huang, X., Boudeau, J., Pawlowski, R., Wullschleger, S., Deak, M., Ibrahim, A.F., Gourlay, R., Magnuson, M.A., and Alessi, D.R. (2007). Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J 405, 513-522. Peterson, T.R., Laplante, M., Thoreen, C.C., Sancak, Y., Kang, S.A., Kuehl, W.M., Gray, N.S., and Sabatini, D.M. (2009). DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137, 873-886. Phan, L.M., Yeung, S.C., and Lee, M.H. (2014). Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol Med 11, 1-19. Pizer, E.S., Wood, F.D., Heine, H.S., Romantsev, F.E., Pasternack, G.R., and Kuhajda, F.P. (1996). Inhibition of fatty acid synthesis delays disease progression in a xenograft model of ovarian cancer. Cancer Res 56, 1189-1193. Portais, J.C., Voisin, P., Merle, M., and Canioni, P. (1996). Glucose and glutamine metabolism in C6 glioma cells studied by carbon 13 NMR. Biochimie 78, 155-164. Rahman, N., Ramos-Espiritu, L., Milner, T.A., Buck, J., and Levin, L.R. (2016). Soluble adenylyl cyclase is essential for proper lysosomal acidification. J Gen Physiol 148, 325-339. Roos, D., and Loos, J.A. (1973). Changes in the carbohydrate metabolism of mitogenically stimulated human peripheral lymphocytes. II. Relative importance of glycolysis and oxidative phosphorylation on phytohaemagglutinin stimulation. Exp Cell Res 77, 127-135. Ruffo, A. (1952). [Preservation of esophagus in plasma by refrigera | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71972 | - |
| dc.description.abstract | 在進行增生的細胞中,麩醯胺酸依賴的回補作用(Glutamine-dependent anaplerosis)對於維持提供細胞生長所需巨分子生合成前驅物的cataplerosis活性扮演一個中心的功能角色。然而,此麩醯胺酸依賴的回補作用在調控主要細胞生長調節途徑mTOR signaling pathway以及對於細胞命運(細胞複製或細胞老化)的抉擇上的影響,還尚未清楚。另外,越來越多的證據顯示,粒線體代謝途徑的狀態影響細胞生長調節者mTORC1的活性。近來,可溶性腺苷酸環化酶(soluble adenylyl cyclase)被認為是一個粒線體TCA cycle的感知者,可以感知粒線體TCA cycle的狀態,且可進而調節粒線體ATP合成的效率。在本研究中,我們利用amino-oxyacetate (AOA),一個轉胺酶抑制物,可以抑制麩醯胺酸依賴的回補作用。在人類纖維母細胞(WI38 cells),AOA處理造成mTORC1/2活性平衡改變(mTORC1失活、mTORC2活化),並且在時間數據上的比較分析上,此活性的起始變化並非導因於細胞內的ATP耗盡或是ADP:ATP比值上升。另外,AOA誘導的mTORC2活化,並非透過S6K1對於Rictor的Thr1135磷酸化負回饋機制控制;但可能與Rictor的蛋白質總量上升相關,但仍需進一步分析。另外,雖然粒線體reactive oxygen species (ROS)在失能的粒線體誘發細胞老化或凋零的機制上,扮演著角色。但在AOA處理下的狀態下,人類的纖維母細胞(WI38 cells)並未觀察到明顯的細胞內ROS量的改變;並且,AOA直接與ROS scavenger N-乙醯半胱氨酸(N-acetyl-cysteine)共同處理,無法抑制AOA誘發的細胞老化或是細胞複製。顯示AOA抑制麩醯胺酸依賴的回補作用所誘發的細胞老化反應不是經由ROS的訊號媒介產生。AOA誘發的細胞老化反應具有兩個階段,前期可逆細胞週期停滯階段,此期間只要恢復提供麩醯胺酸依賴的回補作用,細胞會重新進入細胞複製週期;後期則為不可逆細胞老化週期終止階段,只要通過某一個轉折期,即便在恢復提供麩醯胺酸依賴的回補作用,細胞也不會恢復細胞複製。時間上的分析顯示,p16INK4A可能在不可逆期扮演著重要的角色。
此外,為了探討可溶性腺苷酸環化酶是否參與在麩醯胺酸依賴的回補作用媒介的mTORC1活性中,我們利用可溶性腺苷酸環化酶(soluble adenylyl cyclase)的選擇性專一性抑制物KH7來抑制可溶性腺苷酸環化酶的活性。在人類纖維母細胞(WI38 cells)或人骨肉瘤細胞(U2OS cells),處理KH7同樣會造成mTORC1/2活性平衡改變(mTORC1失活、mTORC2活化),並且進一步造成ATP下降,粒線體群體模式改變及崩解以及細胞生長受到抑制。透過starvation-refeeding的處理方式,KH7在時間上對於麩醯胺酸依賴的回補作用媒介的mTORC1活性,有不同效應: 短期KH7處理(15分鐘)會增強麩醯胺酸依賴的回補作用媒介的mTORC1活性;然而長期KH7處理(120分鐘)反而會抑制麩醯胺酸依賴的回補作用媒介的mTORC1活性。另外,碳酸酐酶抑制劑(acetazolamide)只會造成增強麩醯胺酸依賴的回補作用媒介的mTORC1活性。顯示,可溶性腺苷酸環化酶影響mTORC1活性可能透過不同機制。 本研究顯示,麩醯胺酸依賴的回補作用的狀態除了對於可進行複製細胞的細胞命運(cell fate)扮演角色之外,更提供一個可能的熱點使得mTORC1可以更精確的衡量感知細胞即時的氨基酸可得性(amino acid availability)狀態。而在其中,可溶性腺苷酸環化酶(soluble adenylyl cyclase)可能扮演著重要的角色,媒介粒線體代謝活性與mTOR signaling。 | zh_TW |
| dc.description.abstract | In proliferating cells, glutamine-dependent anaplerosis plays a central role to support cataplerosis-mediated efflux of precursors derived from the TCA cycle intermediates for biomass accumulation, yet its role on central cell growth mTOR signaling pathway and on cell fate determination remain poorly understood. In the present study, we found that sustained blockade of glutamine-dependent anaplerosis with amino-oxyacetate (AOA), a transaminase inhibitor which targets glutaminolytic pathways, leading to mTORC1 inactivation and mTORC2 activation is not due to the ATP depletion, no significant effects on the intracellular ATP contents were observed for as long as 2 days of AOA treatment, whereas the mTORC1 activity was rapidly reduced in WI38 cells within 12 hours of the treatment. Moreover, AOA-induced mTORC2 was not mediated by blocking S6K1 activity toward to the inhibitory phosphorylation of Rictor at Thr1135. In contrast, we observed the increased rictor protein level upon AOA treatment, but its correlation with mTORC2 requires further investigation. Although production of ROS by the mitochondria is known to be a critical senescence-inducing factor, our results suggest that AOA did not increase the intracellular ROS levels and co-treatment with the ROS scavenger N-acetyl-cysteine (NAC) failed to block the AOA-induced growth inhibition and cellular senescence. Moreover, we observed that AOA-induced senescence program is a two stages senescence response: a transient reversible cell cycle arrest before about 3 days of AOA treatment, and subsequent an irreversible senescent growth arrest after 4 days of treatment, similar to replicative senescence. On the other hand, recent studies implicate that soluble adenylyl cyclase (sAC), a special member of adenylyl cyclase family that generates classic secondary messenger cAMP, serves as a sensor of the TCA cycle modulating the efficiency of ATP synthesis, implicating its correlation with glutamine-dependent anaplerosis and mTOR pathways. We observed that inhibition of sAC with KH7 led to mTORC1 inactivation, mTORC2 activation, ATP depletion, collapse of mitochondrial network, and proliferation inhibition in U2OS cells, implicating the essential role of sAC activity for mitochondrial physiology as well as cell growth. Of note, we found that short-term KH7 treatment enhanced glutamine-dependent anaplerosis driven mTORC1 activation, while long-term KH7 treatment still significantly inhibited mTORC1 activity even in the presence of glutamine and leucine. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:17:15Z (GMT). No. of bitstreams: 1 ntu-107-F94b43026-1.pdf: 3740341 bytes, checksum: 32610dba38da434a46f592801fd696fc (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書………………………………………………………………………i
誌謝…………………………………………………………………….……………ii 中文摘要………………………………………………………………………….iii Abstract………………………………………..……………………………….……….v Table of contents ………..……………………………………………………..………vii List of figures…….…………………………………………………………….………..x List of appendixes……...…………………………………………………………..….xii 1.Introduction……………………………………………………………………..…1 1.1.Metabolic reprogramming fuels cell growth and proliferation……………...………1 1.1.1. Aerobic glycolysis………………………………………………………….…2 1.1.2.Mitochondrial cataplerosis-and-anaplerosis…………………5 1.2.Correlation between metabolic pathways with cell fate determination ……………8 1.2.1.Correlation between metabolic pathways and cellular senescence……….….10 1.3.The mechanistic target of rapamycin (mTOR) pathway….................11 1.3.1.mTORC1……………………………………….……………………….……13 1.3.1.1.Components of mTORC1……………………………………………13 1.3.1.2.mTORC1 downstream targets and function……………………13 1.3.1.3.Regulation of mTORC1………………………………………………...……15 1.3.2.mTORC2………………………………………………………………..……23 1.4.Soluble adenylyl cyclase (sAC)-cAMP signaling……………24 1.4.1.Intracellular distribution of sAC…………………………………………26 1.4.2.Role of sAC in mitochondrial function……………………………27 1.4.3.Regulation of sAC activity…………………………………………..………27 1.5.Objective…………………………………………………………………………..29 2.Materials and methods……………………………….…………………….……31 2.1.Materials…………………………………………………………….……….……31 2.2.Cell culture and treatment……………………………..…………………….….…31 2.3.Cell extraction and western blotting ……………………...……33 2.4.Cell number assessment…………………………………………………..…….…34 2.5.Cell cycle analysis.…………………………...……………………..34 2.6.SA-β-gal staining and SAHF formation assay……………35 2.7.Measurement of ATP and ADP ...…………………………………….……………36 2.8.Measurement of ROS……………………………………………….………..……36 2.9.Mitochondrial morphology…………………………………………..……………37 2.10.Statistics…………………………………..…………………….…………………37 3.Results ………………………………….……………………………..….………39 3.1.Inhibition of glutamine-dependent anaplerosis with AOA affected rictor protein level but not its Thr1135 phosphorylation status in WI38 cells………………..……….39 3.2.Inhibition of glutamine-dependent anaplerosis leading to mTORC1 inactivation and mTORC2 activation is not mediated by ATP depletion in WI38 human fibroblast cell line……………………………………………………………………………………...40 3.3.Sustained inhibition of glutamine-dependent anaplerosis with AOA triggers cellular senescence in WI38 cells that may critically involve p16INK4A…………………………40 3.4.AOA-induced cellular senescence in WI38 cells was independent of ROS signals…………………………………………………..……43 3.5.Inhibition of sAC with KH7 led to mTORC1 inactivation, mTORC2 activation, and proliferation inhibition in WI38 cells……………………………………….…..………43 3.6.The role of sAC in anaplerosis-dependent mTORC1 activation………………45 3.7.Inhibition of sAC with KH7 led to mitochondrial fragmentation and reduction of ATP ……………………………….46 4.Discussion…………………………………………………………...……………48 4.1.The advantage of AOA/AOA+αKG treatment to study the role of glutamine-dependent anaplerosis in cell growth and nutrient-sensing mTORC1 pathway…………48 4.2.What is the relation between Glutamine-dependent anaplerosis and mTORC1/2 activity and cell growth? ………………………………………………………………49 4.3.What is the critical factor that restraint of glutamine-dependent anaplerosis initiates senescence-like response in proliferating cells? ………………………………………52 4.4.What is the relation between sAC-cAMP signaling and mTORC1 signaling? ……………………………………………………………………….……..57 4.5.Conclusion……………………………………………………………….……… 61 4.6.Summary…………………………………………………..……………………...62 Figures …………………………………………………………………………….…..63 References …………………………………………………………………………….84 Appendixes………………………………………………………………………...…101 | |
| dc.language.iso | en | |
| dc.subject | 麩醯胺酸依賴的回補作用(glutamine-dependent anaplerosis) | zh_TW |
| dc.subject | sAC) | zh_TW |
| dc.subject | Mechanistic target of rapamycin complex 1/2 (mTORC1/2) | zh_TW |
| dc.subject | 細胞老化(cellular senescence) | zh_TW |
| dc.subject | 代謝重整(metabolic reprogramming) | zh_TW |
| dc.subject | 可溶性腺?酸環化?(soluble adenylyl cyclase | zh_TW |
| dc.subject | Cellular senescence | en |
| dc.subject | Mechanistic target of rapamycin complex 1/2 (mTORC1/2) | en |
| dc.subject | Soluble adenylyl cyclase (sAC) | en |
| dc.subject | Glutamine-dependent anaplerosis | en |
| dc.subject | Metabolic reprogramming | en |
| dc.title | "可溶性腺苷酸環化酶(soluble adenylyl cyclase, sAC)在調控mTORC1訊息傳遞途徑的角色探討" | zh_TW |
| dc.title | The role of soluble adenylyl cyclase (sAC) in regulating mTORC1 signaling pathway | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 黃火鍊(Fore-Lien Huang),黃娟娟(Jiuan-Jiuan Hwang),蕭培文(Pei-Wen Hsiao),李明學(Ming-Shyue Lee) | |
| dc.subject.keyword | 代謝重整(metabolic reprogramming),麩醯胺酸依賴的回補作用(glutamine-dependent anaplerosis),可溶性腺?酸環化?(soluble adenylyl cyclase, sAC),Mechanistic target of rapamycin complex 1/2 (mTORC1/2),細胞老化(cellular senescence), | zh_TW |
| dc.subject.keyword | Metabolic reprogramming,Glutamine-dependent anaplerosis,Soluble adenylyl cyclase (sAC),Mechanistic target of rapamycin complex 1/2 (mTORC1/2),Cellular senescence, | en |
| dc.relation.page | 110 | |
| dc.identifier.doi | 10.6342/NTU201804070 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-21 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 3.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
