Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7196
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳思節(Sz-Jie Wu)
dc.contributor.authorYu-Shiuan Linen
dc.contributor.author林雨萱zh_TW
dc.date.accessioned2021-05-19T17:40:08Z-
dc.date.available2030-07-05
dc.date.available2021-05-19T17:40:08Z-
dc.date.copyright2020-03-03
dc.date.issued2020
dc.date.submitted2020-02-26
dc.identifier.citation1. 山下佳佑、伊佐雅裕、伴加奈子. 2018. 海外情報 台湾のえだまめの生産, 流通および輸出の現状. 野菜情報= Vegetable information 167:73-89.
2. 台灣農家要覽策劃委員會. 台灣農家要覽. 1980. 豐年社. 臺北市
3. 周國隆. 2006. 毛豆新品種 [高雄 9 號 (綠晶)] 問世. 高雄區農情月刊. p. 3-4.
4. 周國隆. 2008. 毛豆外銷新尖兵-[高雄 9 號<綠晶>]. 高雄區農業專訊. p. 8-9.
5. 周國隆. 2010. 毛豆高雄9 號. 高雄區農業專訊. 72:12
6. 行政院農委會農糧署. 2019. 農產品批發市場交易行情站. http://amis.afa.gov.tw/main/Main.aspx .
7. 行政院農委會. 2019. 農業統計資料庫. http://agrstat.coa.gov.tw/sdweb/public/trade/tradereport.aspx .
8. 劉紹國、謝侑蓉. 2011. 台灣冷凍毛豆輸日之成功策略分析. ITIS智網. https://www2.itis.org.tw/NetReport/NetReport_Detail.aspx?rpno=600968836 .
9. Abu-Amer, Y., Erdmann, J., Alexopoulou, L., Kollias, G., Ross, F. P., & Teitelbaum, S. L. 2000. Tumor necrosis factor receptors types 1 and 2 differentially regulate osteoclastogenesis. J. Biol. Chem. 275.35: 27307-27310.
10. Ainsworth, E.A. and K.M. Gillespie. 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using folin–ciocalteu reagent. Nat. Protoc. 2: 875.
11. Aktan, F. 2004. Inos-mediated nitric oxide production and its regulation. Life Sci. 75: 639-653.
12. Albina, J.E., S. Cui, R.B. Mateo, and J.S. Reichner. 1993. Nitric oxide-mediated apoptosis in murine peritoneal macrophages. J. Immunol. 150: 5080-5085.
13. Bartsch, H. and J. Nair. 2006. Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: Role of lipid peroxidation, DNA damage, and repair. ‎Langenbeck’s Arch. Surg. 391: 499-510.
14. Bendich, A., L. Machlin, O. Scandurra, G. Burton, and D. Wayner. 1986. The antioxidant role of vitamin c. Free Radic. Biol. Med. 2: 419-444.
15. Bonizzi, G. and M. Karin. 2004. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25: 280-288.
16. Brand-Williams, W., M.E. Cuvelier, and C. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol. 28: 25-30.
17. Brigelius Flohé, R. 1999. Tissue-specific functions of individual glutathione peroxidases. Free Radical Bio. Med. 27: 951-965.
18. Chang, C.C., M.H. Yang, H.M. Wen, and J.C. Chern. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal.10.
19. Chen, H.M., K. Muramoto, F. Yamauchi, and K. Nokihara. 1996. Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. J. Agric. Food Chem. 44: 2619-2623.
20. Cheng, F.C., S.C. Shen, and J.S.B. Wu. 2009. Effect of guava (psidium guajava l.) leaf extract on glucose uptake in rat hepatocytes. J. Food Sci. 74: H132-H138.
21. Cheng, C., Y. Zou, and J. Peng. 2018. Oregano essential oil attenuates RAW264. 7 cells from lipopolysaccharide-induced inflammatory response through regulating nadph oxidase activation-driven oxidative stress. Molecules 23: 1857.
22. Choi, E.M. and J.K. Hwang. 2005. Screening of indonesian medicinal plants for inhibitor activity on nitric oxide production of RAW264.7 cells and antioxidant activity. Fitoterapia 76: 194-203.
23. Choi, M.S., R. Ryu, Y.R. Seo, T.S. Jeong, D.H. Shin, Y.B. Park, S.R. Kim, and U.J. Jung. 2014. The beneficial effect of soybean (Glycine max (L.) Merr.) leaf extracts in adults with prediabetes: A randomized placebo controlled trial. Food Funct. 5: 1621-1630.
24. Crofford, L.J. 1997. COX-1 and COX-2 tissue expression: Implications and predictions. J. Rheumatol. Supplement 49: 15-19.
25. Decker, E.A. and B. Welch. 1990. Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agric. Food Chem. 38: 674-677.
26. Derosa, M.C. and R.J. Crutchley. 2002. Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 233: 351-371.
27. Dewitt, D.L. and E.A. Meade. 1993. Serum and glucocorticoid regulation of gene transcription and expression of the prostaglandin h synthase-1 and prostaglandin h synthase-2 isozymes. Arch. Biochem. Biophys. 306: 94-102.
28. Dinarello, C.A. 2000. Proinflammatory cytokines. Chest 118: 503-508.
29. Ďuračková, Z. 2010. Some current insights into oxidative stress. Physiol. Res. 59.
30. Evett, G.E., W. Xie, J.G. Chipman, D.L. Robertson, and D.L. Simmons. 1993. Prostaglandin g/h synthase isoenzyme 2 expression in fibroblasts-regulation by dexamethasone, mitogens, and oncogenes. Arch. Biochem. Biophys. 306: 169-177.
31. Fang, J., T. Seki, and H. Maeda. 2009. Therapeutic strategies by modulating oxygen stress in cancer and inflammation. Adv. Drug Deliv. Rev. 61: 290-302.
32. Fehr, W. R., & Caviness, C. E. 1977. Stages of soybean development.
33. Fehsel, K., K. Kröncke, K.L. Meyer, H. Huber, V. Wahn, and V. Kolb-Bachofen. 1995. Nitric oxide induces apoptosis in mouse thymocytes. J. Immunol. 155: 2858-2865.
34. Finkel, T. 1998. Oxygen radicals and signaling. Curr. Opin. Cell Biol. 10: 248-253.
35. Finkel, T. and N.J. Holbrook. 2000. Oxidants, oxidative stress and the biology of ageing. Nature 408: 239.
36. Foey, A.D. 2014. Macrophages-masters of immune activation, suppression and deviation. In: Immune response activation. IntechOpen. 121-149.
37. Forrester, K., S. Ambs, S.E. Lupold, R.B. Kapust, E.A. Spillare, W.C. Weinberg, E. Felley-Bosco, X.W. Wang, D.A. Geller, and E. Tzeng. 1996. Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc. Natl. Acad. Sci. 93: 2442-2447.
38. Fridovich, I. 1978. The biology of oxygen radicals. Science 201: 875-880.
39. Fujiwara, N. and K. Kobayashi. 2005. Macrophages in inflammation. Curr. Drug Targets Inflamm. Allergy 4: 281-286.
40. Gaynor, J., B. Buttery, R. Buzzell, and D. Mac Tavish. 1988. Hplc separation and relative quantitation of kaempferol glycosides in soybean. Chromatographia 25: 1049-1053.
41. Gutteridge, J.M. 1994. Biological origin of free radicals, and mechanisms of antioxidant protection. Chem. Biol. Interact. 91: 133-140.
42. Halliwell, B. 1990. How to characterize a biological antioxidant. Free Radical Res. Commun. 9: 1-32.
43. Halliwell, B. and J. Gutteridge. 1984. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219: 1.
44. Halliwell, B., M.A. Murcia, S. Chirico, and O.I. Aruoma. 1995. Free radicals and antioxidants in food and in vivo: What they do and how they work. Crit. Rev. Food Sci. Nutr. 35: 7-20.
45. Han, J. M., Li, H., Cho, M. H., Baek, S. H., Lee, C. H., Park, H. Y., & Jeong, T. S. 2017. Soy-leaf extract exerts atheroprotective effects via modulation of Krüppel-like factor 2 and adhesion molecules. Int. J. Mol. Sci. 18.2: 373.
46. Harraan, D. 1955. Aging: A theory based on free radical and radiation chemistry.
47. Hartley, J.W., L.H. Evans, K.Y. Green, Z. Naghashfar, A.R. Macias, P.M. Zerfas, and J.M. Ward. 2008. Expression of infectious murine leukemia viruses by RAW264.7 cells, a potential complication for studies with a widely used mouse macrophage cell line. Retrovirology 5: 1.
48. Herschman, H.R. 1996. Prostaglandin synthase 2. Biochim. Biophys. Acta 1299: 125-140.
49. Hierholzer, C., B. Harbrecht, J.M. Menezes, J. Kane, J. Macmicking, C.F. Nathan, A.B. Peitzman, T.R. Billiar, and D.J. Tweardy. 1998. Essential role of induced nitric oxide in the initiation of the inflammatory response after hemorrhagic shock. J. Exp. Med. 187: 917-928.
50. Ho, H.M., R.Y. Chen, L.K. Leung, F.L. Chan, Y. Huang, and Z.-Y. Chen. 2002. Difference in flavonoid and isoflavone profile between soybean and soy leaf. ‎Biomed. Pharmacother. 56: 289-295.
51. Ho, H. M., Leung, L. K., Chan, F. L., Huang, Y., & Chen, Z. Y. 2003. Soy leaf lowers the ratio of non-HDL to HDL cholesterol in hamsters. ‎J. Agric. Food Chem. 51.16: 4554-4558.
52. Hsu, H., J. Xiong, and D.V. Goeddel. 1995. The TNF receptor 1-associated protein tradd signals cell death and NF-κB activation. Cell 81: 495-504.
53. Huwiler, A. and J. Pfeilschifter. 1994. Interleukin-1 stimulates de novo synthesis of mitogen-activated protein kinase in glomerular mesangial cells. FEBS Lett. 350: 135-138.
54. Inoue, H., C. Yokoyama, S. Hara, Y. Tone, and T. Tanabe. 1995. Transcriptional regulation of human prostaglandin-endoperoxide synthase-2 gene by lipopolysaccharide and phorbol ester in vascular endothelial cells involvement of both nuclear factor for interleukin-6 expression site and camp response element. J. Biol. Chem. 270: 24965-24971.
55. Israë, A. 1997. Signal transduction: Iκb kinase all zipped up. Nature 388: 519.
56. Jacob, R.A. and B.J. Burri. 1996. Oxidative damage and defense. Am. J. Clin. Nutr. 63: 985S-990S.
57. Khandrika, L., B. Kumar, S. Koul, P. Maroni, and H.K. Koul. 2009. Oxidative stress in prostate cancer. Cancer Lett. 282: 125-136.
58. Kim, B., Y. Lee, E. Kim, A. Kwak, S. Ryoo, S. Bae, T. Azam, S. Kim, and C.A. Dinarello. 2013. The interleukin-1α precursor is biologically active and is likely a key alarmin in the IL-1 family of cytokines. Front. Immunol. 4 :391.
59. Kim, S.S., O.J. Oh, H.Y. Min, E.J. Park, Y. Kim, H.J. Park, Y.N. Han, and S.K. Lee. 2003. Eugenol suppresses cyclooxygenase-2 expression in lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells. Life Sci. 73: 337-348.
60. Kim, U. H., Yoon, J. H., Li, H., Kang, J. H., Ji, H. S., Park, K., ... & Jeong, T. S. 2014. Pterocarpan-enriched soy leaf extract ameliorates insulin sensitivity and pancreatic β-cell proliferation in type 2 diabetic mice. Molecules 19.11: 18493-18510.
61. Kriegler, M., C. Perez, K. Defay, I. Albert, and S. Lu. 1988. A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: Ramifications for the complex Physiol. Of TNF. Cell 53: 45-53.
62. Krinsky, N.I. 1989. Antioxidant functions of carotenoids. Free Radic. Biol. Med. 7: 617-635.
63. Lambeth, J.D. 2007. Nox enzymes, ROS, and chronic disease: An example of antagonistic pleiotropy. Free Radic. Biol. Med. 43: 332-347.
64. Lee, C.H., L. Yang, J.Z. Xu, S.Y.V. Yeung, Y. Huang, and Z.Y. Chen. 2005. Relative antioxidant activity of soybean isoflavones and their glycosides. Food Chem. 90: 735-741.
65. Lee, J.H., I.Y. Baek, M.G. Choung, T.J. Ha, W.-Y. Han, K.M. Cho, J.-M. Ko, S.H. Jeong, K.-W. Oh, and K.-Y. Park. 2008. Phytochemical constituents from the leaves of soybean [Glycine max (L.) Merr.]. Food Sci. Biotechnol. 17: 578-586.
66. Lenardo, M. J., & Baltimore, D. 1989. NF-κB: a pleiotropic mediator of inducible and tissue-specific gene control. Cell 58.2: 227-229.
67. Li, H., J.H. Kang, J.M. Han, M.H. Cho, Y.J. Chung, K.H. Park, D.H. Shin, H.Y. Park, M.S. Choi, and T.S. Jeong. 2015. Anti-obesity effects of soy leaf via regulation of adipogenic transcription factors and fat oxidation in diet-induced obese mice and 3T3-L1 adipocytes. J. Med. 18: 899-908.
68. Liaudet, L., F.G. Soriano, and C. Szabó. 2000. Biology of nitric oxide signaling. Crit. Care Med. 28: N37-N52.
69. López-Collazo, E., J. Mateo, M.a.T. Miras-Portugal, and L. Boscá. 1997. Requirement of nitric oxide and calcium mobilization for the induction of apoptosis in adrenal vascular endothelial cells. FEBS Lett. 413: 124-128.
70. Lyons, C.R., G. Orloff, and J. Cunningham. 1992. Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. J. Biol. Chem. 267: 6370-6374.
71. Mackaness, G. 1964. The immunological basis of acquired cellular resistance. J. Exp. Med. 120: 105-120.
72. Macmicking, J., Q.W. Xie, and C. Nathan. 1997. Nitric oxide and macrophage function. Annu. Rev. Immunol. 15: 323-350.
73. Mantovani, A., A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati. 2004. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25: 677-686.
74. Meister, A. and M.E. Anderson. 1983. Glutathione. Annu. Rev. Biochem. 52: 711-760.
75. Messina, M. and V. Messina. 1991. Increasing use of soyfoods and their potential role in cancer prevention. J. Am. Diet. Assoc. 91: 836-840.
76. Morris, J.K. and J.S. Richards. 1996. An e-box region within the prostaglandin endoperoxide synthase-2 (pgs-2) promoter is required for transcription in rat ovarian granulosa cells. J. Biol. Chem. 271: 16633-16643.
77. Moure, A., J.M. Cruz, D. Franco, J.M. Domı́Nguez, J. Sineiro, H. Domı́Nguez, M.a.J. Núñez, and J.C. Parajó. 2001. Natural antioxidants from residual sources. Food Chem. 72: 145-171.
78. Müllberg, J., Geib, T., Jostock, T., Hoischen, S. H., Vollmer, P., Voltz, N., & Rose-John, S. 2000. IL-6 receptor independent stimulation of human gp130 by viral IL-6. J. Immunol. 164.9: 4672-4677.
79. Nair, J., A. Gal, S. Tamir, S.R. Tannenbaum, G.N. Wogan, and H. Bartsch. 1998. Etheno adducts in spleen DNA of sjl mice stimulated to overproduce nitric oxide. Carcinogenesis 19: 2081-2084.
80. Naka, K., T. Muraguchi, T. Hoshii, and A. Hirao. 2008. Regulation of reactive oxygen species and genomic stability in hematopoietic stem cells. ‎Antioxid. Redox Signal. 10: 1883-1894.
81. Nathan, C. and Q. Xie. 1994. Regulation of biosynthesis of nitric oxide. J. Biol. Chem. 269: 13725-13728.
82. Opal, S.M. and V.A. Depalo. 2000. Anti-inflammatory cytokines. Chest 117: 1162-1172.
83. O'sullivan, M., F.H. Chilton, E. Huggins, and C. Mccall. 1992. Lipopolysaccharide priming of alveolar macrophages for enhanced synthesis of prostanoids involves induction of a novel prostaglandin h synthase. J. Biol. Chem. 267: 14547-14550.
84. Peterson, J. and J. Dwyer. 1998. Flavonoids: Dietary occurrence and biochemical activity. Nutr. Res. 18: 1995-2018.
85. Pinsky, D.J., W. Aji, M. Szabolcs, E.S. Athan, Y. Liu, Y.M. Yang, R.P. Kline, K.E. Olson, and P.J. Cannon. 1999. Nitric oxide triggers programmed cell death (apoptosis) of adult rat ventricular myocytes in culture. Am. J. Physiol. Heart Circ. Physiol. 277: H1189-H1199.
86. Porter, P., W. Banwart, and J. Hassett. 1986. Phenolic acids and flavonoids in soybean root and leaf extracts. Environ. Exp. Bot. 26: 65-73.
87. Razali, N., S. Mat-Junit, A.F. Abdul-Muthalib, S. Subramaniam, and A. Abdul-Aziz. 2012. Effects of various solvents on the extraction of antioxidant phenolics from the leaves, seeds, veins and skins of tamarindus indica l. Food Chem. 131: 441-448.
88. Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans. 1999. Antioxidant activity applying an improved abts radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231-1237.
89. Reinhard, C., B. Shamoon, V. Shyamala, and L.T. Williams. 1997. Tumor necrosis factor α‐induced activation of c‐jun n‐terminal kinase is mediated by traf2. EMBO J. 16: 1080-1092.
90. Reuter, S., S.C. Gupta, M.M. Chaturvedi, and B.B. Aggarwal. 2010. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 49: 1603-1616.
91. Rhee, S.G., Y.S. Bae, S.R. Lee, and J. Kwon. 2000. Hydrogen peroxide: A key messenger that modulates protein phosphorylation through cysteine oxidation. Sci. Signal. 2000: pe1-pe1.
92. Romani, A., P. Vignolini, C. Galardi, C. Aroldi, C. Vazzana, and D. Heimler. 2003. Polyphenolic content in different plant parts of soy cultivars grown under natural conditions. J. Agric. Food Chem. 51: 5301-5306.
93. Rothwarf, D.M. and M. Karin. 1999. The NF-κB activation pathway: A paradigm in information transfer from membrane to nucleus. Sci. STKE 1999: re1-re1.
94. Saiga, A., S. Tanabe, and T. Nishimura. 2003. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J. Agric. Food Chem. 51: 3661-3667.
95. Sargent, J.M. 2003. The use of the mtt assay to study drug resistance in fresh tumour samples, p. 13-25. In: Chemosensitivity testing in oncology. Springer.
96. Scheller, J., A. Chalaris, D. Schmidt-Arras, and S. Rose-John. 2011. The pro-and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta 1813: 878-888.
97. Schletter, J., H. Heine, A.J. Ulmer, and E.T. Rietschel. 1995. Molecular mechanisms of endotoxin activity. Arch. Microbiol. 164: 383-389.
98. Schweizer, A., U. Feige, A. Fontana, K. Müller, and C. Dinarello. 1988. Interleukin-1 enhances pain reflexes. Mediation through increased prostaglandin e 2 levels. Agents Actions 25: 246-251.
99. Simpson, C. and B. Morris. 1999. Activation of nuclear factor κb by nitric oxide in rat striatal neurones: Differential inhibition of the p50 and p65 subunits by dexamethasone. J. Neurochem. 73: 353-361.
100. Sims, J.E., J.G. Giri, and S.K. Dower. 1994. The two interleukin-1 receptors play different roles in IL-1 actions. J. Clin. Immunol. 72: 9-14.
101. Singleton, V.L., R. Orthofer, and R.M. Lamuela-Raventós. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent, p. 152-178. In: Methods in enzymology. Elsevier.
102. Sirois, J., D. Simmons, and J. Richards. 1992. Hormonal regulation of messenger ribonucleic acid encoding a novel isoform of prostaglandin endoperoxide h synthase in rat preovulatory follicles. Induction in vivo and in vitro. J. Biol. Chem. 267: 11586-11592.
103. Smith, W.L., R.M. Garavito, and D.L. Dewitt. 1996. Prostaglandin endoperoxide h synthases (cyclooxygenases)-1 and− 2. J. Biol. Chem. 271: 33157-33160.
104. Song, H.H., H.W. Ryu, K.J. Lee, I.Y. Jeong, D.S. Kim, and S.R. Oh. 2014. Metabolomics investigation of flavonoid synthesis in soybean leaves depending on the growth stage. Metabolomics 10: 833-841.
105. Spigno, G. and D.M. De Faveri. 2007. Antioxidants from grape stalks and marc: Influence of extraction procedure on yield, purity and antioxidant power of the extracts. J. Food Eng. 78: 793-801.
106. Stanley, A.C. and P. Lacy. 2010. Pathways for cytokine secretion. Physiol. 25: 218-229.
107. Steeve, K.T., P. Marc, T. Sandrine, H. Dominique, and F. Yannick. 2004. IL-6, rankl, TNF-alpha/IL-1: Interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev. 15: 49-60.
108. Su, Z.Y., L. Shu, T.O. Khor, J.H. Lee, F. Fuentes, and A.N.T. Kong. 2012. A perspective on dietary phytochemicals and cancer chemoprevention: Oxidative stress, NRf2, and epigenomics, p.133-162. In: Natural products in cancer prevention and therapy. Springer.
109. Su, Z.J., Y.Y. Wei, D. Yin, X.H. Shuai, Y. Zeng, and T.J. Hu. 2013. Effect of sophora subprosrate polysaccharide on oxidative stress induced by PCV2 infection in RAW264.7 cells. Int. J. Biol. Macromol. 62: 457-464.
110. Suh, Y.A., R.S. Arnold, B. Lassegue, J. Shi, X. Xu, D. Sorescu, A.B. Chung, K.K. Griendling, and J.D. Lambeth. 1999. Cell transformation by the superoxide-generating oxidase mox1. Nature 401: 79.
111. Tachakittirungrod, S., S. Okonogi, and S. Chowwanapoonpohn. 2007. Study on antioxidant activity of certain plants in Thailand: Mechanism of antioxidant action of guava leaf extract. Food Chem. 103: 381-388.
112. Trent, M.S. 2010. Biosynthesis and membrane assembly of lipid a, p. 305-318. In: Microbial glycobiology. Elsevier.
113. Turrens, J.F. 1997. Superoxide production by the mitochondrial respiratory chain. Biosci. Rep. 17: 3-8.
114. Wan, F. and M.J. Lenardo. 2010. The nuclear signaling of NF-κB: Current knowledge, new insights, and future perspectives. Cell Res. 20: 24.
115. Xie, W. and H.R. Herschman. 1995. V-src induces prostaglandin synthase 2 gene expression by activation of the c-jun n-terminal kinase and the c-jun transcription factor. J. Biol. Chem. 270: 27622-27628.
116. Yamamoto, K., T. Arakawa, N. Ueda, and S. Yamamoto. 1995. Transcriptional roles of nuclear factor b and nuclear factor-interleukin-6 in the tumor necrosis factor-dependent induction of cyclooxygenase-2 in mc3t3-e1 cells. J. Biol. Chem. 270: 31315-31320.
117. Yen, G.C. and H.Y. Chen. 1995. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 43: 27-32.
118. Yuk, H.J., J.H. Lee, M.J. Curtis-Long, J.W. Lee, Y.S. Kim, H.W. Ryu, C.G. Park, T.S. Jeong, and K.H. Park. 2011. The most abundant polyphenol of soy leaves, coumestrol, displays potent α-glucosidase inhibitory activity. Food Chem. 126: 1057-1063.
119. Zang, Y., Sato, H., & Igarashi, K. 2011. Anti-Diabetic Effects of a kaempferol glycoside-rich fraction from unripe soybean (Edamame, Glycine max L. Merrill.‘Jindai’) Leaves on KK-Ay Mice. Biosci. Biotechnol. Biochem. 75.9: 1677-1684.
120. Zeldin, D.C. 2001. Epoxygenase pathways of arachidonic acid metabolism. J. Biol. Chem. 276: 36059-36062.
121. Zhang, Y., C. Liu, B. Dong, X. Ma, L. Hou, X. Cao, and C. Wang. 2015. Anti-inflammatory activity and mechanism of surfactin in lipopolysaccharide-activated macrophages. Inflammation 38: 756-764.
122. Zheng, X., K. Turkowski, J. Mora, B. Brüne, W. Seeger, A. Weigert, and R. Savai. 2017. Redirecting tumor-associated macrophages to become tumoricidal effectors as a novel strategy for cancer therapy. Oncotarget 8: 48436.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7196-
dc.description.abstract毛豆為蔬菜用大豆的一種,屬於豆科(Leguminosae)大豆屬(Glycine)植物,為台灣外銷重要的經濟作物,主要在春、秋兩季種植,在台灣毛豆葉一般都以廢棄物處理或堆肥。在先前研究中發現毛豆葉及大豆葉萃取物含有豐富的酚類化合物且有許多生理活性對人體有益。因此本研究目的為探討不同溶劑萃取毛豆葉,比較其總酚及總類黃酮含量,並評估不同萃取物之抗氧化活性與抗發炎的能力,且了解其抗發炎的機制。將新鮮毛豆葉乾燥後磨成粉,用極性由高至低的溶劑水、70%甲醇、70%乙醇及乙酸乙酯萃取,得萃取率方面依序以水(25%)、甲醇(19%)、乙醇(18%)及乙酸乙酯(5%),而萃取物之總酚及類黃酮含量,均以70%甲醇及70%乙醇有較高的含量。在抗氧化評估方面,DPPH自由基清除率的結果顯示,甲醇及乙醇萃取物濃度為2.5 mg.mL-1時可達80%以上清除率,而對ABTS+自由基清除力及螯合亞鐵離子能力,以水及70%甲醇萃取物有較好的效果。
毛豆葉萃取物對是否有LPS誘導之RAW264.7巨噬細胞之細胞毒性評估顯示,水、甲醇及乙醇萃取物在1000 mg.L-1濃度下皆未顯示任何細胞毒性。於抑制一氧化氮生成方面,水萃物以600 mg.L-1、甲醇及乙醇萃取物以200 mg.L -1處理的一氧化氮生成量顯著低於正控制組,且具有濃度效應,隨著萃取物濃度上升,一氧化氮的抑制效果有顯著上升的趨勢,尤其在70%甲醇萃取物的抑制效果最為明顯且抑制率可達86%,與一氧化氮合成酶表現量有相同的趨勢,以甲醇及乙醇萃取物的iNOS表現量最低,推測毛豆葉可能藉由抑制iNOS來調控一氧化氮生成,另外,在COX-2基因表現量也有明顯降低。對於LPS誘導之RAW264.7細胞之TNF-α、IL-1β及IL-6生成量之結果表示,70%甲醇萃取物能顯著降低TNF-α、IL-6及IL-1β的產生,另外,也能提高細胞內GSH / GSSG ratio,由8增加至12.8。根據研究結果,毛豆葉具有抗氧化能力且對以LPS誘導之巨噬細胞生成之發炎相關介質具有抑制效果,因此毛豆葉具有發展成保健食品之潛力。
zh_TW
dc.description.abstractEdamame (Glycine max (L.) Merr.) is a kind of vegetable soybean, belonging to Leguminosae family Glycine genus, is an important export economic crop in Taiwan, which is mainly grown in spring and autumn. In Taiwan, edamame leaves are generally treated as waste or fertilizer. Previous studies have found that edamame leaf and soybean leaf extracts are rich in phenolic compounds and have many physiological activities that are beneficial to the human body. The purpose of this study was to explore the extraction of edamame leaves with different solvents, then comparing their total phenol and total flavonoid content. Its antioxidant activity and anti-inflammatory capacity of different extracts, and anti-inflammatory mechanisms were experimented. Fresh edamame leaves were dried and ground to powder, and then respectively extracted with polarity high-to-low solvent: water, 70% methanol, 70% ethanol, and ethyl acetate. The sequentially extractabilities were water (25%), methanol (19%), ethanol (18%) and ethyl acetate (5%). The total phenol and flavonoid content of the extracts in 70% methanol and 70% ethanol were higher. In terms of antioxidant evaluation, the results of DPPH radical scavenging rate showed that the methanol and ethanol extract concentration was 2.5 mg.mL-1, and the scavenging rate could reach more than 80%. Water extract and 70% methanol extract exhibited better effect in scavenging ABTS + radicals and chelating ferrous ion.
The potential cytotoxicities of edamame leaf extracts were evaluated in RAW264.7 cells in the presence or absence of LPS. Water, methanol and ethanol extracts did not cause any cytotoxicity at concentrations up to 1000 mg.L -1. In terms of inhibiting the formation of nitric oxide, 600 mg.L -1 water extract and 200 mg.L -1 methanol and 200 mg.L -1 ethanol extract were significantly lower than the positive control group and also showed concentration-effect. As the concentration of the extract increased, there was a significant upward trend in inhibitory effect on nitric oxide biosynthesis, especially on 70% methanol extract in which the inhibition rate was up to 86%, and nitric oxide synthase (iNOS) expressed the same trend. As the result, it speculated that edamame leaves might regulate nitric oxide production by inhibiting iNOS. In addition, the expression level of COX-2 gene was also significantly reduced. The results of LPS-induced production of TNF-α, IL-1β, and IL-6 in RAW264.7 cells showed that 70% methanol extract could significantly reduce the production of TNF-α, IL-6, and IL-1β, which could also increase the intracellular GSH / GSSG ratio from 8 to 12.8. According to the research results, edamame leaves had anti-oxidant ability and had inhibitory effect on the inflammation-related mediators produced by LPS-induced macrophages. Therefore, edamame leaves have the potential to be the new kind of raw material of healthy foods.
en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:40:08Z (GMT). No. of bitstreams: 1
ntu-109-R06628209-1.pdf: 3295315 bytes, checksum: f50d65c50a12c06e98d0de8526497c7e (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents中文摘要 3
Abstract 4
目 錄 6
表目錄 9
圖目錄 10
第一章、前言 12
第二章、文獻探討 13
第一節、台灣大豆與毛豆之生產與外銷概況 13
第二節、毛豆與毛豆葉 16
一、毛豆介紹 16
二、主要種植地區及產量 18
三、毛豆消費方式 20
四、毛豆與毛豆葉中酚類化合物之比較 21
五、毛豆葉與大豆葉之功能性 23
第三節、抗氧化機能性 26
一、自由基與活性氧(ROS)的生成 26
二、抗氧化系統之防禦自由基與ROS的傷害 28
三、抗氧化劑及其作用機制 30
第四節、免疫調節與抗發炎之模型 31
一、免疫系統與發炎反應 31
二、巨噬細胞及調節發炎之介質 31
三、以LPS誘導發炎模型 39
第三章、材料與方法 41
第一節、試驗動機與目的 41
第二節、試驗架構 42
第三節、實驗設備與試驗材料 43
一、儀器設備 43
二、試驗材料 44
第四節、毛豆葉萃取物製備 45
一、萃取法試驗 45
二、萃取率試驗 45
第五節、 抗氧化含量分析 46
一、總酚類含量分析 46
二、總類黃酮含量分析 46
第六節、抗氧化活性測試 48
一、DPPH自由基清除能力 48
二、ABTS陽離子自由基清除能力 48
三、還原力測定 48
四、亞鐵離子螯合能力測定 49
第七節、RAW264.7小鼠巨噬細胞培養 50
一、細胞株 50
二、細胞培養試劑配置 50
三、細胞繼代培養 51
四、細胞冷凍保存 51
五、冷凍細胞活化 51
第八節、RAW264.7小鼠巨噬細胞發炎模型 52
一、細胞存活率分析(MTT assay) 52
二、一氧化氮生成抑制試驗 52
三、細胞激素生成試驗 53
四、還原型和氧化型穀胱甘肽(GSH / GSSG)的比例 54
第九節、iNOS及COX-2之mRNA表現量分析 55
一、細胞RNA抽取 55
二、Reverse Transcription PCR 56
三、聚合酶連鎖反應 57
四、瓊脂膠體電泳分析 58
第十節、統計分析 59
第四章、結果討論 60
第一節、毛豆葉之不同溶劑萃取物之抗氧化特性分析 60
一、不同溶劑及方法之萃取率比較 60
二、總酚類化合物及總類黃酮之含量分析 61
三、抗氧化活性試驗 62
第二節、毛豆葉萃取物之抗發炎功效評估 75
一、巨噬細胞RAW264.7存活率 75
二、抑制一氧化氮生成 76
三、iNOS基因表現 77
四、COX-2基因表現 77
五、細胞激素生成 78
六、還原型和氧化型穀胱甘肽(GSH / GSSG)的比例 79
第五章、結論 100
第六章、參考文獻 102
dc.language.isozh-TW
dc.title毛豆葉萃取物之抗氧化活性及抗發炎活性探討zh_TW
dc.titleStudy of Antioxidant Activities and Anti-inflammatory Activities of Vegetable Soybean Leaves Extractsen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee徐源泰(Yuan-Tay Shyu),劉育姍,王鍾毅
dc.subject.keyword毛豆葉,抗氧化能力,巨噬細胞,抗發炎功效,zh_TW
dc.subject.keywordVegetable soybean leaves,Antioxidant capacity,Macrophages,Anti-inflammatory,en
dc.relation.page114
dc.identifier.doi10.6342/NTU202000623
dc.rights.note同意授權(全球公開)
dc.date.accepted2020-02-27
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
dc.date.embargo-lift2030-07-05-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  此日期後於網路公開 2030-07-05
3.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved