Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71964
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許聿翔(Yu-Hsiang Hsu)
dc.contributor.authorKui-Yu Panen
dc.contributor.author潘奎宇zh_TW
dc.date.accessioned2021-06-17T06:16:54Z-
dc.date.available2020-08-22
dc.date.copyright2018-08-27
dc.date.issued2018
dc.date.submitted2018-08-23
dc.identifier.citation[1] http://www.phrma.org/
[2] J. A. DiMasi, R. W. Hansen, and H. G. Grabowski, 'The price of innovation: new estimates of drug development costs,' J Health Econ, vol. 16, no. 2, pp. 151-85, 2003.
[3] H. Karlsson, M. Fryknäs, R. Larsson, and P. Nygren, 'Loss of cancer drug activity in colon cancer HCT-116 cells during spheroid formation in a new 3-D spheroid cell culture system, ' Exp Cell Res. vol. 318, no. 13, pp. 1577-85, 2012
[4] G. M. Thurber, K. S. Yang, T. Reiner, R. H. Kohler, P. Sorger, T. Mitchison, and R. Weissleder, 'Single-cell and subcellular pharmacokinetic imaging allows insight into drug action in vivo, ' Nature Communications, vol. 4, pp. 1504, 2013.
[5] F. Y. Hsieh, L. Tao, Y. Wei, and S. H. Hsu, 'A novel biodegradable self-healing hydrogel to induce blood capillary formation, ' NPG Asia Materials, vol.9, pp. e363, 2017.
[6] F. Ahmadi, Z. Oveisi, S. M. Samani, and Z. Amoozgar, 'Chitosan based hydrogels: characteristics and pharmaceutical applications, ' Res Pharm Sci, vol.10, no.1, pp. 1-16, 2015.
[7] R. Ahmadi, A. J. Burns, and J.D. de Bruijn, 'Chitosan-based hydrogels do not induce angiogenesis, ' J Tissue Eng Regen Med, vol.4, no.4, pp. 309-15, 2010.
[8] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, ' Molecular Biology of the Cell, ' Garland Science, 4th edition, 2002.
[9] H. Mohammadi, P. D. Arora, C. A. Simmons, P. A. Janmey, and C. A. McCulloch, 'Inelastic behaviour of collagen networks in cell –matrix interactions and mechanosensation, ' J. R. Soc Interface, vol.12, no.102, pp. 20141074, 2015.
[10] D. Lehnert, B. Wehrle-Haller, C. David, U. Weiland, C. Ballestrem, B. A. Imhof, and M. Bastmeyer, 'Cell behaviour on micropatterned substrata: limits of extracellular matrix geometry for spreading and adhesion, ' Journal of Cell Science, vol.117, no.1, pp. 41-52, 2004.
[11] K. M. Park, and S. Gerecht, 'Harnessing developmental processes for vascular engineering and regeneration, ' Development, vol.141, no.14, pp. 2760-2769, 2014.
[12] G. J. Tortora, and B. Derrickson, 'Principles of Anatomy and Physiology, ' WILEY, 14th Edition, 2013.
[13] D. S. Steinbrech, M. T. Longaker, B. J. Mehrara, P. B. Saadeh, G. S. Chin, R. P. Gerrets, D. C. Chau, N. M. Rowe, and G. K. Gittes., 'Fibroblast response to hypoxia: The relationship between angiogenesis and matrix regulation, ' Journal of Surgical Research, vol.84, no.2, pp. 127-133, 1999.
[14] C. Michiels, T. Arnould, and J. Remacle, 'Endothelial cell responses to hypoxia: initiation of a cascade of cellular interactions, ' Biochim Biophys Acta, vol.1497, no.1, pp. 1-10, 2000.
[15] Y. H. Hsu, M. L. Moya, P. Abiri, C. C. Hughes, S. C. George, and A. P. Lee, 'Full range physiological mass transport control in 3D tissue cultures, ' Lab Chip, vol.13, pp. 81, 2013.
[16] G. E. Davis, and D. R. Senger, 'Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization, ' Circ Res, vol.97, no.11, pp. 1093-107, 2005.
[17] P. A. Soucy, and L. H. Romer, 'Endothelial cell adhesion, signaling, and morphogenesis in fibroblast-derived matrix, ' Matrix Biology, vol.28, no.5, pp. 273-83, 2009.
[18] S. R. McKeown, 'Defining normoxia, physoxia and hypoxia in tumours—implications for treatment response, ' Br J Radiol, vol.87, no.1035, pp. 20130676, 2014.
[19] C. Bonvin, J. Overney, A. C. Shieh, J. B. Dixon, and M. A. Swartz, 'A multichamber fluidic device for 3D cultures under interstitial flow with live imaging: development, characterization, and applications, ' Biotechnol. Bioeng, vol.105, no.5, pp. 982-91, 2010.
[20] J. M. Munson, and A. C. Shieh, 'Interstitial fluid flow in cancer: implications for disease progression and treatment, ' Cancer Management and Research, vol.6, pp. 317-28, 2014.
[21] C.-L. E. Helm, M. E. Fleury, A. H. Zisch, F. Boschetti and M. A. Swartz, Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 15779–15784.
[22] S. M. Ahsan, M. Thomas, K. K. Reddy, S. G. Sooraparaju, A. Asthana, and I. Bhatnagar, 'Chitosan as biomaterial in drug delivery and tissue engineering, ' International Journal of Biological Macromolecules, vol.110, pp. 97-109, 2018.
[23] Y. Zhang, L. Tao, S. Li, and Y. Wei, 'Synthesis of Multiresponsive and Dynamic Chitosan-Based Hydrogels for Controlled Release of Bioactive Molecules, ' Biomacromolecules, vol.12, no.8, pp. 2894-901, 2011.
[24] S. V. Murphy, and A. Atala, '3D Bioprinting of Tissues and Organs, ' Nature Biotechnology, vol.32, no.8, pp.773-85, 2014.
[25] T. L. Bach, C. Barsigian, C. H. Yaen, and J. Martinez, 'Endothelial cell VE-cadherin functions as a receptor for the beta15-42 sequence of fibrin, ' J Biol Chem, vol.273, no.46, pp. 30719-28, 1998.
[26] D. Vestweber, 'VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation, ' Arterioscler Thromb Vasc Biol, vol.28, no.2, pp. 223-32, 2008.
[27] M. W. Mosesson, 'Fibrinogen and fibrin structure and functions, ' J Thromb Haemost, vol.3, no.8, pp.1894-904, 2005.
[28] F. M. Shaikh, A. Callanan, E. G. Kavanagh, P. E. Burke, P. A. Grace, and T. M. McGloughlin, 'Fibrin: a natural biodegradable scaffold in vascular tissue engineering, ' Cells Tissues Organs, vol.188, no.4, pp.333-46, 2008.
[29] S. Kim, H. Lee, M. Chung, and N. L. Jeon, 'Engineering of functional, perfusable 3D microvascular networks on a chip, ' Lab Chip, vol.13, no.8, pp.1489-500, 2013.
[30] S. P. Arnoczky, and A. Aksan, 'Thermal modification of connective tissues: basic science considerations and clinical implications, ' J Am Acad Orthop Surg, vol.8, no.5, pp.305-13, 2000.
[31] J. W. Song, and L. L. Munn, 'Fluid forces control endothelial sprouting, ' Proc Natl Acad Sci U S A, vol.108, no.37, pp.15342-7, 2011.
[32] N Seyedhassantehrani, Y Li, and L Yao, 'Dynamic behaviors of astrocytes in chemically modified fibrin and collagen hydrogels, ' Integr Biol, vol.8, no.5, pp. 624-34, 2016.
[33] K. T. Morin, and R. T. Tranquillo, 'In Vitro Models of Angiogenesis and Vasculogenesis in Fibrin Gel' Exp Cell Res, vol. 319, no.16, pp. 2409–2417, 2013
[34] R. Wary, S. Sivaraj, Gurukarthikeyan, R. K. Pathak, S. L. Mari Suraj, G. Dasararaju, G. Kannayiram, 'Chitosan gallic acid microsphere incorporated collagen matrix for chronic wounds: Biophysical and biochemical characterization, ' International Journal of Pharmacy and Pharmaceutical Sciences, vol.6, no.6, pp.94, 2014.
[35] V. Reyhani, P. Seddigh, B. Guss, R. Gustafsson, L. Rask, and K. Rubin, 'Fibrin binds to collagen and provides a bridge for αVβ3 integrin-dependent contraction of collagen gels, ' Biochem. J., vol.462, no.1, pp.113-23, 2014.
[36] B. Byambaa, N. Annabi, K. Yue, G. Trujillo-de Santiago, M. M. Alvarez, W. Jia , M. Kazemzadeh-Narbat, S. R. Shin, A. Tamayol, and A. Khademhosseini, 'Bioprinted Osteogenic and Vasculogenic Patterns for Engineering 3D Bone Tissue, ' Advanced Healthcare Materials, vol.6, no.16, 2017.
[37] J. D. Stoien, and R. J. Wang, 'Effect of Near-Ultraviolet and Visible Light on Mammalian Cells in Culture II. Formation of Toxic Photoproducts in Tissue Culture Medium by Blacklight, ' Proc Natl Acad Sci U S A, vol.71, no.10, pp. 3961-5, 1974.
[38] Y Imamura, T. Mukohara, Y. Shimono, Y. Funakoshi, N. Chayahara, M. Toyoda , N. Kiyota, S. Takao, S. Kono, T. Nakatsura, and H. Minami, 'Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer, ' Oncol Rep, vol.33, no.4, pp. 1837-43, 2015.
[39] Y. Xu, D. Xia, J. Han, S. Yuan, H. Lin, and C. Zhao, 'Design and fabrication of porous chitosan scaffolds with tunable structures and mechanical properties, ' Carbohydr Polym, vol.1, no.177, pp. 210-216. 2017.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71964-
dc.description.abstract利用生物3D列印技術在體外建立具有功能性的3D仿生組織作為藥物學與生物研究的模型是組織工程領域中的一大目標。其中,如何建立出仿生組織具有與體內相似的微血管網絡,並具有提供組織氧氣、營養與代謝的功能,至今依然是一大挑戰。在組織工程中,具有適當的基材及三維細胞支架結構的生物水膠,在體外可培養出具有功能性的血管網絡成為類組織尤為重要。目前建構血管網絡的方法是將血管內皮細胞及基質細胞加入具有細胞外基質的水膠,於體外培養出血管組織,例如: fibrin gel、collagen gel、matrigel等等,前述的水膠機械特性皆不適合用做3D列印水膠。然而目前適合使用在3D列印技術的生物水膠配方,鮮少具有誘導血管新生的潛力。
本研究主要探討可3D列印之甲殼素水膠作為基底與細胞外基質fibrin gel 、collagen gel與aprotinin混合之微組織培養性質,並發展出具有良好機械性質、及具有誘導血管新生潛能的生物水膠。另外此研究亦探討本水膠的各成份摻混順序影響微血管組織生長型態。此外,本研究開發了一組織培養系統。以具有生物相容性的聚二甲基矽氧烷(PDMS)作為水膠的注膠模具,並設計壓克力材質的底座與培養液槽,最後使用不鏽鋼螺絲將之固定。實驗結果顯示第五天時,對組織進行螢光染色可觀察到血管組織。本研究的新型生物水膠未來將結合組織晶片與微流道的概念發展出可作為藥物篩檢之微系統裝置、及作為生物3D列印技術之材料。
zh_TW
dc.description.abstractThe aim of the 3-D bio-printing is to build functional 3-D biomimetic tissues in vitro. However, the current challenge is o build biomimetic tissues that can provide functional vasculature to supply oxygen, nutrition and metabolism similar to microvascular network in vivo. In tissue engineering, it is important that 3-D gel contains appropriate matrices, and 3-D cell scaffold has functional vessel network in vitro. Currently, the method of building microvascular network is to use hydrogel composed with extracellular matrix (ECM) embedded with endothelial cells and stromal cells. However, common ECM-based hydrogel like fibrin gel, collagen gel, and matrigel are not suitable for 3-D printing process. On the other hand, not all of 3-D printable gels have the potential for induction of angiogenic and vasculogenic process.
In this thesis, the 3-D printable chitosan gel was used as the base of the 3-D printable hydrogel, and different extracellular matrix is added to study their contribution to the development of vasculature. The extracellular matrix been studied includes Fibrinogen and collagen-I. It is found that vasculogenic process is hard to be induced in a mixture of chitosan and fibrin gel. But, the level of vessel formation is increased with mixtures composed of both fibrinogen and collagen-I fibers. Using a bioreactor developed in this study to create a hypoxic environment for stimulating vasculogenesis, it is found that the addition sequence of chitosan, fibrinogen, and collagen-I can influence the development of vasculogenic process. After comparing the developed vessel structures on Day-5, it is found that a better vessel formation can be created by adding fibrinogen between chitosan and collagen-I. Discussion on the experimental findings and statistical analysis on the developed vasculature are detailed in this thesis.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:16:54Z (GMT). No. of bitstreams: 1
ntu-107-R05543093-1.pdf: 6354844 bytes, checksum: 56c9cc0ca40cf68cb92d5f1778896b1e (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vii
表目錄 x
Chapter 1 緒論 1
1.1 研究動機 1
1.2 研究目標 2
1.3 論文架構 3
Chapter 2 文獻回顧 4
2.1 細胞外基質纖維分佈影響細胞貼附與型態 4
2.1.1 細胞與細胞外基質之貼附與重組裝 4
2.1.2 細胞外基質的幾何影響與限制細胞鋪平(Spreading)型態 4
2.2 血管新生vaculogenesis與angiogenesis機制介紹 5
2.3 體外血管組織建構:血管內皮細胞與成纖維細胞共培養 6
2.4 培養環境影響血管組織生長之研究 7
2.5 生物水膠之介紹 9
2.5.1 甲殼素水膠為基底之水膠運用在3D列印技術建構體外組織 10
2.5.2 纖維蛋白水膠與膠原蛋白水膠運用於血管新生研究。 11
2.5.3 抑肽酶(aprotinin)延長纖維蛋白 15
2.6 甲殼素水膠與細胞外基質水膠之間的相互作用 16
2.6.1 甲殼素與膠原蛋白水膠之交互作用 16
2.6.2 纖維原蛋白與膠原蛋白之間互相作用 17
2.7 目前3D列印技術建立血管網絡方法 18
2.7.1 利用具有誘導血管新生之光固化水膠3D列印類血管通道 18
2.8 目前體外二維與三維細胞篩藥模型對藥物敏感性比較 20
Chapter 3 研究方法與材料 22
3.1 PDMS水膠流道設計與製作 22
3.1.1 水膠流道設計概念 22
3.1.2 水膠流道母模具製作 24
3.1.3 PDMS翻模轉印流道結構製程 24
3.2 水膠注膠模具系統 25
3.3 組織培養系統組裝與設計概念 27
3.4 以甲殼素為基底之水膠各成份濃度與製備方式 28
3.5 水膠注膠流程 28
3.6 組織培養系統之養分供給方法 29
3.7 組織培養系統養分供給之有限元素法模擬 31
3.7.1 有限元素分析之建模 31
3.7.2 有限元素分析之統御方程式 32
3.7.3 有限元素分析之邊界條件 33
3.7.4 有限元素分析之初始值 34
3.7.5 有限元素分析之材料屬性 35
3.7.6 有限元素分析之建立網格 35
3.8 細胞培養及生物技術 35
3.9 以甲殼素為基底之水膠各成份摻混順序設計 36
3.10 組織螢光免疫染色 37
3.11 水膠細胞外基質螢光免疫染色 38
3.12 水膠內細胞外基質纖維與血管組織量化與分析 39
Chapter 4 實驗結果與討論 40
4.1 有限元素模擬分析結果 40
4.2 以甲殼素為基底之水膠細胞外基質纖維螢光免疫染色 42
4.2.1 摻混順序Ct_F之水膠內細胞外基質纖維螢光免疫染色 42
4.2.2 摻混順序Ct _C_FA之水膠內細胞外基質纖維螢光免疫染色 43
4.2.3 摻混順序Ct_FA_C之水膠內細胞外基質纖維螢光免疫染色 43
4.2.4 摻混順序Ct_F_C_A之水膠內細胞外基質纖維螢光免疫染色 44
4.2.5 摻混順序Ct_A_C_F之水膠內細胞外基質纖維螢光免疫染色 45
4.2.6 摻混順序Ct_C_AF之水膠內細胞外基質纖維螢光免疫染色 46
4.2.7 摻混順序Ct_AF_C之水膠內細胞外基質纖維螢光免疫染色 47
4.2.8 純Ct水膠螢光染色之螢光雜訊 48
4.3 小結 49
4.3.1 Fibrinogen與Collagen之摻混順序先後之影響 49
4.3.2 aprotinin摻混順序對Collagen與fibrinogen纖維之影響 51
4.4 不同水膠摻混順序對血管組織培養之差異 52
4.4.1 水膠摻混順序Ct_F之血管組織螢光免疫染色 53
4.4.2 水膠摻混順序Ct_FA_C之血管組織螢光免疫染色 54
4.4.3 水膠摻混順序Ct_AF_C之血管組織螢光免疫染色 55
4.4.4 水膠摻混順序Ct_C_AF之血管組織螢光免疫染色 57
4.4.5 水膠摻混順序Ct_A_C_F之血管組織螢光免疫染色 58
4.5 小結 60
Chapter 5 結論 62
Chapter 6 未來展望 63
Chapter 7 參考資料 64
dc.language.isozh-TW
dc.subject生物水膠zh_TW
dc.subject微組織zh_TW
dc.subject3D組織列印zh_TW
dc.subject甲殼素zh_TW
dc.subjectMicrotissueen
dc.subjectHydrogelen
dc.subject3-D bioprintingen
dc.subjectchitosanen
dc.title以甲殼素生物水膠為基底之微組織培養技術之開發zh_TW
dc.titleDevelopment of microtissue based on chitosan hydrogelen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡文聰(Andrew Wo),董亦鍾(Yi-Chung Tung)
dc.subject.keyword微組織,生物水膠,3D組織列印,甲殼素,zh_TW
dc.subject.keywordMicrotissue,Hydrogel,3-D bioprinting,chitosan,en
dc.relation.page66
dc.identifier.doi10.6342/NTU201804035
dc.rights.note有償授權
dc.date.accepted2018-08-23
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
6.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved