請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71961完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 田蕙芬 | |
| dc.contributor.author | Feng-Ming Tien | en |
| dc.contributor.author | 田豐銘 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:16:45Z | - |
| dc.date.available | 2018-09-06 | |
| dc.date.copyright | 2018-09-06 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-23 | |
| dc.identifier.citation | Abbas, T., and A. Dutta. 2009. 'p21 in cancer: intricate networks and multiple activities', Nat Rev Cancer, 9: 400-14.
Abdel-Wahab, O., and R. L. Levine. 2013. 'Mutations in epigenetic modifiers in the pathogenesis and therapy of acute myeloid leukemia', Blood, 121: 3563-72. Araki, D., B. L. Wood, M. Othus, J. P. Radich, A. B. Halpern, Y. Zhou, M. Mielcarek, E. H. Estey, F. R. Appelbaum, and R. B. Walter. 2016. 'Allogeneic Hematopoietic Cell Transplantation for Acute Myeloid Leukemia: Time to Move Toward a Minimal Residual Disease-Based Definition of Complete Remission?', J Clin Oncol, 34: 329-36. Arber, D. A., A. Orazi, R. Hasserjian, J. Thiele, M. J. Borowitz, M. M. Le Beau, C. D. Bloomfield, M. Cazzola, and J. W. Vardiman. 2016. 'The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia', Blood, 127: 2391-405. Bally, C., L. Ades, A. Renneville, M. Sebert, V. Eclache, C. Preudhomme, M. J. Mozziconacci, H. de The, J. Lehmann-Che, and P. Fenaux. 2014. 'Prognostic value of TP53 gene mutations in myelodysplastic syndromes and acute myeloid leukemia treated with azacitidine', Leuk Res, 38: 751-5. Bejar, R., A. Lord, K. Stevenson, M. Bar-Natan, A. Perez-Ladaga, J. Zaneveld, H. Wang, B. Caughey, P. Stojanov, G. Getz, G. Garcia-Manero, H. Kantarjian, R. Chen, R. M. Stone, D. Neuberg, D. P. Steensma, and B. L. Ebert. 2014. 'TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients', Blood, 124: 2705-12. Burnett, A., M. Wetzler, and B. Lowenberg. 2011. 'Therapeutic advances in acute myeloid leukemia', J Clin Oncol, 29: 487-94. Butrym, A., J. Rybka, D. Baczynska, R. Poreba, K. Kuliczkowski, and G. Mazur. 2016. 'Clinical response to azacitidine therapy depends on microRNA-29c (miR-29c) expression in older acute myeloid leukemia (AML) patients', Oncotarget. Bykov, V. J., N. Issaeva, A. Shilov, M. Hultcrantz, E. Pugacheva, P. Chumakov, J. Bergman, K. G. Wiman, and G. Selivanova. 2002. 'Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound', Nat Med, 8: 282-8. Carvajal, L. A., D. B. Neriah, A. Senecal, L. Benard, V. Thiruthuvanathan, T. Yatsenko, S. R. Narayanagari, J. C. Wheat, T. I. Todorova, K. Mitchell, C. Kenworthy, V. Guerlavais, D. A. Annis, B. Bartholdy, B. Will, J. D. Anampa, I. Mantzaris, M. Aivado, R. H. Singer, R. A. Coleman, A. Verma, and U. Steidl. 2018. 'Dual inhibition of MDMX and MDM2 as a therapeutic strategy in leukemia', Sci Transl Med, 10. Chang, C. K., Y. S. Zhao, F. Xu, J. Guo, Z. Zhang, Q. He, D. Wu, L. Y. Wu, J. Y. Su, L. X. Song, C. Xiao, and X. Li. 2017. 'TP53 mutations predict decitabine-induced complete responses in patients with myelodysplastic syndromes', Br J Haematol, 176: 600-08. Cheson, B. D., J. M. Bennett, K. J. Kopecky, T. Buchner, C. L. Willman, E. H. Estey, C. A. Schiffer, H. Doehner, M. S. Tallman, T. A. Lister, F. Lo-Coco, R. Willemze, A. Biondi, W. Hiddemann, R. A. Larson, B. Lowenberg, M. A. Sanz, D. R. Head, R. Ohno, and C. D. Bloomfield. 2003. 'Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia', J Clin Oncol, 21: 4642-9. Cheson, B. D., P. L. Greenberg, J. M. Bennett, B. Lowenberg, P. W. Wijermans, S. D. Nimer, A. Pinto, M. Beran, T. M. de Witte, R. M. Stone, M. Mittelman, G. F. Sanz, S. D. Gore, C. A. Schiffer, and H. Kantarjian. 2006. 'Clinical application and proposal for modification of the International Working Group (IWG) response criteria in myelodysplasia', Blood, 108: 419-25. Chou, W. C., S. P. Yeh, L. T. Hsiao, S. F. Lin, Y. C. Chen, T. Y. Chen, E. Laille, A. Galettis, Q. Dong, S. Songer, and C. L. Beach. 2017. 'Efficacy, safety, and pharmacokinetics of subcutaneous azacitidine in Taiwanese patients with higher-risk myelodysplastic syndromes', Asia Pac J Clin Oncol, 13: e430-e39. Dohner, H., E. Estey, D. Grimwade, S. Amadori, F. R. Appelbaum, T. Buchner, H. Dombret, B. L. Ebert, P. Fenaux, R. A. Larson, R. L. Levine, F. Lo-Coco, T. Naoe, D. Niederwieser, G. J. Ossenkoppele, M. Sanz, J. Sierra, M. S. Tallman, H. F. Tien, A. H. Wei, B. Lowenberg, and C. D. Bloomfield. 2017. 'Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel', Blood, 129: 424-47. Dombret, H., J. F. Seymour, A. Butrym, A. Wierzbowska, D. Selleslag, J. H. Jang, R. Kumar, J. Cavenagh, A. C. Schuh, A. Candoni, C. Recher, I. Sandhu, T. Bernal del Castillo, H. K. Al-Ali, G. Martinelli, J. Falantes, R. Noppeney, R. M. Stone, M. D. Minden, H. McIntyre, S. Songer, L. M. Lucy, C. L. Beach, and H. Dohner. 2015. 'International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts', Blood, 126: 291-9. Fenaux, P., G. J. Mufti, E. Hellstrom-Lindberg, V. Santini, N. Gattermann, U. Germing, G. Sanz, A. F. List, S. Gore, J. F. Seymour, H. Dombret, J. Backstrom, L. Zimmerman, D. McKenzie, C. L. Beach, and L. R. Silverman. 2010. 'Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia', J Clin Oncol, 28: 562-9. Grimwade, D., H. Walker, F. Oliver, K. Wheatley, C. Harrison, G. Harrison, J. Rees, I. Hann, R. Stevens, A. Burnett, and A. Goldstone. 1998. 'The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties', Blood, 92: 2322-33. Herman, J. G., and S. B. Baylin. 2003. 'Gene silencing in cancer in association with promoter hypermethylation', N Engl J Med, 349: 2042-54. Hollenbach, P. W., A. N. Nguyen, H. Brady, M. Williams, Y. Ning, N. Richard, L. Krushel, S. L. Aukerman, C. Heise, and K. J. MacBeth. 2010. 'A comparison of azacitidine and decitabine activities in acute myeloid leukemia cell lines', PLoS One, 5: e9001. Hou, H. A., W. C. Chou, Y. Y. Kuo, C. Y. Liu, L. I. Lin, M. H. Tseng, Y. C. Chiang, M. C. Liu, C. W. Liu, J. L. Tang, M. Yao, C. C. Li, S. Y. Huang, B. S. Ko, S. C. Hsu, C. Y. Chen, C. T. Lin, S. J. Wu, W. Tsay, Y. C. Chen, and H. F. Tien. 2015. 'TP53 mutations in de novo acute myeloid leukemia patients: longitudinal follow-ups show the mutation is stable during disease evolution', Blood Cancer J, 5: e331. Itzykson, R., S. Thepot, C. Berthon, J. Delaunay, D. Bouscary, T. Cluzeau, P. Turlure, T. Prebet, C. Dartigeas, J. P. Marolleau, C. Recher, I. Plantier, A. Stamatoullas, A. Devidas, A. L. Taksin, R. Guieze, D. Caillot, N. Vey, L. Ades, N. Ifrah, H. Dombret, P. Fenaux, and C. Gardin. 2015. 'Azacitidine for the treatment of relapsed and refractory AML in older patients', Leuk Res, 39: 124-30. Ivanoff, S., B. Gruson, S. P. Chantepie, E. Lemasle, L. Merlusca, V. Harrivel, A. Charbonnier, P. Votte, B. Royer, and J. P. Marolleau. 2013. '5-Azacytidine treatment for relapsed or refractory acute myeloid leukemia after intensive chemotherapy', Am J Hematol, 88: 601-5. Jung, S. H., Y. J. Kim, S. H. Yim, H. J. Kim, Y. R. Kwon, E. H. Hur, B. K. Goo, Y. S. Choi, S. H. Lee, Y. J. Chung, and J. H. Lee. 2016. 'Somatic mutations predict outcomes of hypomethylating therapy in patients with myelodysplastic syndrome', Oncotarget, 7: 55264-75. Kantarjian, H. M., X. G. Thomas, A. Dmoszynska, A. Wierzbowska, G. Mazur, J. Mayer, J. P. Gau, W. C. Chou, R. Buckstein, J. Cermak, C. Y. Kuo, A. Oriol, F. Ravandi, S. Faderl, J. Delaunay, D. Lysak, M. Minden, and C. Arthur. 2012. 'Multicenter, randomized, open-label, phase III trial of decitabine versus patient choice, with physician advice, of either supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed acute myeloid leukemia', J Clin Oncol, 30: 2670-7. Levine, A. J., and S. L. Berger. 2017. 'The interplay between epigenetic changes and the p53 protein in stem cells', Genes Dev, 31: 1195-201. Lund, K., J. J. Cole, N. D. VanderKraats, T. McBryan, N. A. Pchelintsev, W. Clark, M. Copland, J. R. Edwards, and P. D. Adams. 2014. 'DNMT inhibitors reverse a specific signature of aberrant promoter DNA methylation and associated gene silencing in AML', Genome Biol, 15: 406. Macleod, K. F., N. Sherry, G. Hannon, D. Beach, T. Tokino, K. Kinzler, B. Vogelstein, and T. Jacks. 1995. 'p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage', Genes Dev, 9: 935-44. Maurillo, L., A. Venditti, A. Spagnoli, G. Gaidano, D. Ferrero, E. Oliva, M. Lunghi, A. M. D'Arco, A. Levis, D. Pastore, N. Di Renzo, A. Santagostino, V. Pavone, F. Buccisano, and P. Musto. 2012. 'Azacitidine for the treatment of patients with acute myeloid leukemia: report of 82 patients enrolled in an Italian Compassionate Program', Cancer, 118: 1014-22. Moller, M. B., Y. Ino, A. M. Gerdes, K. Skjodt, D. N. Louis, and N. T. Pedersen. 1999. 'Aberrations of the p53 pathway components p53, MDM2 and CDKN2A appear independent in diffuse large B cell lymphoma', Leukemia, 13: 453-9. Pan, R., V. Ruvolo, H. Mu, J. D. Leverson, G. Nichols, J. C. Reed, M. Konopleva, and M. Andreeff. 2017. 'Synthetic Lethality of Combined Bcl-2 Inhibition and p53 Activation in AML: Mechanisms and Superior Antileukemic Efficacy', Cancer Cell, 32: 748-60.e6. Papaemmanuil, E., M. Gerstung, L. Bullinger, V. I. Gaidzik, P. Paschka, N. D. Roberts, N. E. Potter, M. Heuser, F. Thol, N. Bolli, G. Gundem, P. Van Loo, I. Martincorena, P. Ganly, L. Mudie, S. McLaren, S. O'Meara, K. Raine, D. R. Jones, J. W. Teague, A. P. Butler, M. F. Greaves, A. Ganser, K. Dohner, R. F. Schlenk, H. Dohner, and P. J. Campbell. 2016. 'Genomic Classification and Prognosis in Acute Myeloid Leukemia', N Engl J Med, 374: 2209-21. Perugini, M., D. G. Iarossi, C. H. Kok, N. Cummings, S. M. Diakiw, A. L. Brown, S. Danner, P. Bardy, L. Bik To, A. H. Wei, I. D. Lewis, and R. J. D'Andrea. 2013. 'GADD45A methylation predicts poor overall survival in acute myeloid leukemia and is associated with IDH1/2 and DNMT3A mutations', Leukemia, 27: 1588-92. Pishas, K. I., S. J. Neuhaus, M. T. Clayer, A. W. Schreiber, D. M. Lawrence, M. Perugini, R. J. Whitfield, G. Farshid, J. Manavis, S. Chryssidis, B. J. Mayo, R. C. Haycox, K. Ho, M. P. Brown, R. J. D'Andrea, A. Evdokiou, D. M. Thomas, J. Desai, D. F. Callen, and P. M. Neilsen. 2014. 'Nutlin-3a efficacy in sarcoma predicted by transcriptomic and epigenetic profiling', Cancer Res, 74: 921-31. Pleyer, L., S. Burgstaller, M. Girschikofsky, W. Linkesch, R. Stauder, M. Pfeilstocker, M. Schreder, C. Tinchon, T. Sliwa, A. Lang, W. R. Sperr, P. Krippl, D. Geissler, D. Voskova, K. Schlick, J. Thaler, S. Machherndl-Spandl, G. Theiler, O. Eckmullner, and R. Greil. 2014. 'Azacitidine in 302 patients with WHO-defined acute myeloid leukemia: results from the Austrian Azacitidine Registry of the AGMT-Study Group', Ann Hematol, 93: 1825-38. Prokocimer, M., A. Molchadsky, and V. Rotter. 2017. 'Dysfunctional diversity of p53 proteins in adult acute myeloid leukemia: projections on diagnostic workup and therapy', Blood, 130: 699-712. Quintas-Cardama, A., C. Hu, A. Qutub, Y. H. Qiu, X. Zhang, S. M. Post, N. Zhang, K. Coombes, and S. M. Kornblau. 2017. 'p53 pathway dysfunction is highly prevalent in acute myeloid leukemia independent of TP53 mutational status', Leukemia, 31: 1296-305. Quintas-Cardama, A., F. Ravandi, T. Liu-Dumlao, M. Brandt, S. Faderl, S. Pierce, G. Borthakur, G. Garcia-Manero, J. Cortes, and H. Kantarjian. 2012. 'Epigenetic therapy is associated with similar survival compared with intensive chemotherapy in older patients with newly diagnosed acute myeloid leukemia', Blood, 120: 4840-5. Shih, A. H., O. Abdel-Wahab, J. P. Patel, and R. L. Levine. 2012. 'The role of mutations in epigenetic regulators in myeloid malignancies', Nat Rev Cancer, 12: 599-612. Silverman, L. R., D. R. McKenzie, B. L. Peterson, J. F. Holland, J. T. Backstrom, C. L. Beach, and R. A. Larson. 2006. 'Further analysis of trials with azacitidine in patients with myelodysplastic syndrome: studies 8421, 8921, and 9221 by the Cancer and Leukemia Group B', J Clin Oncol, 24: 3895-903. Takahashi, K., K. Patel, C. Bueso-Ramos, J. Zhang, C. Gumbs, E. Jabbour, T. Kadia, M. Andreff, M. Konopleva, C. DiNardo, N. Daver, J. Cortes, Z. Estrov, A. Futreal, H. Kantarjian, and G. Garcia-Manero. 2016. 'Clinical implications of TP53 mutations in myelodysplastic syndromes treated with hypomethylating agents', Oncotarget, 7: 14172-87. Thepot, S., R. Itzykson, V. Seegers, C. Recher, E. Raffoux, B. Quesnel, J. Delaunay, T. Cluzeau, A. Marfaing Koka, A. Stamatoullas, M. P. Chaury, C. Dartigeas, S. Cheze, A. Banos, P. Morel, I. Plantier, A. L. Taksin, J. P. Marolleau, C. Pautas, X. Thomas, F. Isnard, B. Beve, Y. Chait, A. Guerci, N. Vey, F. Dreyfus, L. Ades, N. Ifrah, H. Dombret, P. Fenaux, and C. Gardin. 2014. 'Azacitidine in untreated acute myeloid leukemia: a report on 149 patients', Am J Hematol, 89: 410-6. Tien, H. F., C. H. Wang, M. T. Lin, F. Y. Lee, M. C. Liu, S. M. Chuang, Y. C. Chen, M. C. Shen, K. H. Lin, and D. T. Lin. 1995. 'Correlation of cytogenetic results with immunophenotype, genotype, clinical features, and ras mutation in acute myeloid leukemia. A study of 235 Chinese patients in Taiwan', Cancer Genet Cytogenet, 84: 60-8. Tsai, C. H., H. A. Hou, J. L. Tang, Y. Y. Kuo, Y. C. Chiu, C. C. Lin, C. Y. Liu, M. H. Tseng, T. Y. Lin, M. C. Liu, C. W. Liu, L. I. Lin, M. Yao, C. C. Li, S. Y. Huang, B. S. Ko, S. C. Hsu, C. T. Lin, S. J. Wu, C. Y. Chen, W. Tsay, E. Y. Chuang, W. C. Chou, and H. F. Tien. 2017. 'Prognostic impacts and dynamic changes of cohesin complex gene mutations in de novo acute myeloid leukemia', Blood Cancer J, 7: 663. Tsai, H. C., H. Li, L. Van Neste, Y. Cai, C. Robert, F. V. Rassool, J. J. Shin, K. M. Harbom, R. Beaty, E. Pappou, J. Harris, R. W. Yen, N. Ahuja, M. V. Brock, V. Stearns, D. Feller-Kopman, L. B. Yarmus, Y. C. Lin, A. L. Welm, J. P. Issa, I. Minn, W. Matsui, Y. Y. Jang, S. J. Sharkis, S. B. Baylin, and C. A. Zahnow. 2012. 'Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells', Cancer Cell, 21: 430-46. Vousden, K. H., and C. Prives. 2005. 'P53 and prognosis: new insights and further complexity', Cell, 120: 7-10. Welch, J. S., A. A. Petti, C. A. Miller, C. C. Fronick, M. O'Laughlin, R. S. Fulton, R. K. Wilson, J. D. Baty, E. J. Duncavage, B. Tandon, Y. S. Lee, L. D. Wartman, G. L. Uy, A. Ghobadi, M. H. Tomasson, I. Pusic, R. Romee, T. A. Fehniger, K. E. Stockerl-Goldstein, R. Vij, S. T. Oh, C. N. Abboud, A. F. Cashen, M. A. Schroeder, M. A. Jacoby, S. E. Heath, K. Luber, M. R. Janke, A. Hantel, N. Khan, M. J. Sukhanova, R. W. Knoebel, W. Stock, T. A. Graubert, M. J. Walter, P. Westervelt, D. C. Link, J. F. DiPersio, and T. J. Ley. 2016. 'TP53 and Decitabine in Acute Myeloid Leukemia and Myelodysplastic Syndromes', N Engl J Med, 375: 2023-36. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71961 | - |
| dc.description.abstract | 急性骨髓性白血病(acute myeloid leukemia,以下簡稱血癌)定義為周邊血液或骨髓血液髓性芽細胞(myeloblast)數目超過20%。血癌主要治療為化學治療,若無法接受化療或是化療失敗的血癌病人預後很差。近年來研究致力於非化療藥物在血癌的治療,兩種去甲基化藥物 (hypomethylating agents): azacitidine和decitabine最早核准於治療骨髓再生不良症候群 (myelodysplastic syndrome, MDS),隨後亦證實其在血癌的療效。去甲基化藥物結構類似核苷(nucleoside),可以併入DNA,抑制DNA甲基轉移酶(DNA methyltransferases) 的作用而達到去甲基化之效果。血癌病人帶有相當多不同的基因突變,其中亦包含表觀遺傳(epigenetics) 相關的基因突變,例如: DNMT3A, TET2, ASXL1, IDH1, IDH2, EZH2。表觀遺傳機轉包含了DNA甲基化 (DNA methylation)、組蛋白調控 (histone modification)、核小體修飾 (nucleosome modeling)。越來越多的研究顯示表觀遺傳可能是血癌重要的致病機轉之一。
與一般化療藥物不同的是,臨床上評估去甲基化藥物療效至少要在治療兩個療程,也就是兩個月後。如果能夠在治療之初就能預測療效,對於臨床照顧病人將會有莫大的好處。直到最近,一篇大型研究發現帶有TP53突變的血癌對於decitabine治療反應很好(反應率高達100%)。可惜的是,其他幾個研究團隊並沒有辦法驗證帶有TP53突變對治療的影響。去甲基化藥物對於帶有TP53突變血癌有效的分子機轉也仍然不明瞭。TP53是一個重要的抑癌基因(tumor suppressor gene),研究已經發現表觀遺傳與p53蛋白的調控關係。p53蛋白與其下游基因的甲基化程度會影響基因表達,進而影響化療或標靶藥物之有效性。P53蛋白功能異常(p53 dysfunction)是很多癌症,包括血癌重要的致病機轉之一。P53蛋白功能異常可以出現在mutant p53也可以出現在wild-type p53,因此無論p53突變與否都有可能因為這個抑癌基因失去功能導致癌症。使用藥物恢復P53蛋白功能異常是目前重要的研究主題。有鑑於去甲基化藥物對血癌的有效性機轉仍不明瞭,本研究試圖研究去甲基化藥物對p53路徑的調控。我們的研究假設是,臨床上去甲基化藥物對血癌的療效,可能是因為去甲基化藥物活化p53 pathway來促進細胞死亡。 在研究的第一部份,我們希望驗證TP53突變與去甲基化藥物對血癌的療效是否相關。我們回溯性收集113位使用過azacitidine的血癌病人,挑選出50位初診斷即接受Azacitidine治療病人的檢體,以次序代定序(next generation sequencing)的方式找出病人突變的基因,探討TP53以及其他的基因突變,是否可以預測azacitidine臨床治療的反應。我們的研究發現,20%血癌病人帶有TP53突變,對於Aza治療反應在TP53突變與非突變病人分別為50%和31.4%,並未達到顯著差異。 第二部分,我們將使用血癌細胞株(cell lines)來測試其對兩種去甲基化藥物的敏感性以及有效的機轉。我們將分別選用p53突變細胞株Kasumi-1和p53未突變的細胞株THP-1, OCI-AML3,來研究去甲基化藥物是否能恢復p53蛋白功能異常,以及是否能活化p53下游路徑的基因。不同的細胞株對於去甲基化藥物敏感性不同,我們可由生長曲線和細胞聚落生成實驗(colony formation assay)中觀察到,p53突變細胞株Kasumi-1對於去甲基化藥物最敏感。然而,去甲基化藥物無法改善Kasumi-1細胞株p53蛋白功能異常,且無論是p53蛋白與p53下游蛋白表現皆不受到影響。因此去甲基化藥物對Kasumi-1細胞的有效性並非來自於影響p53調控的凋亡和細胞週期路徑。 我們的研究結果可提供臨床醫師使用AZA治療血癌的參考。收集更多病人數目後,亦可發展重要的生物標記(biomarker)來預測臨床使用AZA治療的有效性。實驗室已建立去甲基化藥物處理細胞株的模型,奠定未來深入研究的基礎。將來,我們可利用分子生物技術改變p53的表達狀態,進一步了解去甲基化藥物和p53分子路徑的調控機轉。 | zh_TW |
| dc.description.abstract | Acute myeloid leukemia (AML) is defined as myeloblast more than 20% in either peripheral blood or bone marrow. The prognosis for acute myeloid leukemia (AML) patients who are unfit or refractory to chemotherapy is dismal. Hypomethylating agents (HMA), azacitidine (AZA) and decitabine (DAC), had been approved by United States Food and Drug Administration for treatment of high-risk myelodysplastic syndrome (MDS) and AML patients. HMA is incorporated into DNA and acts as a direct and irreversible inhibitor of DNA methyltransferases (DNMTs), thereby reversing the transcriptional silencing of tumor-suppressor genes. Genome-wide studies in AML identified several mutations in genes related to epigenetic modifications, such as DNMT3A, IDH1, IDH2, and EZH2, as well as altered methylation across the entire epigenome. These data highlight the importance of epigenetic mechanisms in the pathogenesis of AML.
Different from chemotherapy agents, the onset of clinical response to HMA is insidious, which should be assessible at least 2 months later. It is clinically important to identidy suitable clinical and molecular determinants at initial diagnosis that may predict HMA response to tailor individualized treatment strategy. Recently, TP53 mutations were identified as crucial molecular determinants of response to DAC in AML and MDS patients in one study, with 100% of TP53-mutated patients respond to DAC. However, other studies failed to find the correlation between TP53 mutation status and clinical responses. Besides, the detailed molecular mechanisms underlying the sensitivity of AML to HMA remain to be elucidated. TP53 is a well known tumor suppressor gens, and studies have demonstrated the interplay between epigenetic changes and the p53 protein expression. Aberrant methylation of p53 target genes is inversely correlated with gene expression and has been linked to tumor response to HMA. It was well documented that p53 dysfunction, despite its mutation status, was rather frequent in various AML entities. Reversal of p53 dysfunction is an area of active research. We hypothesize that HMA exert their anti-leukemic effects via p53 activation and regulation of p53 target genes. We postulated that HMA treatment may increase the expression of p53 target genes. In the first part of our study, we aimed to investigate whether TP53 mutation was a true molecular determinant of HMA response in AML patients. We performed a retrospective analysis of 113 AML patients who received AZA treatment at National Taiwan University Hospital. Sixty-seven patients received AZA as first line theray, and the other 46 patients received AZA as salvage treatment. Next generation sequencing of 54 target genes that are commonly mutated in AML was performed in 50 patients receving AZA as first line therapy. We found that TP53 mutation occurred in 20% of the patients. The overall response rate was not significantly different between TP53-mutated (50%) and TP53 wild-type (31.4%) patients. In the second part, we investigated the effects of DAC and AZA on p53 pathways in vitro using human AML cell lines— OCI-AML3 and THP-1 cells (wild-type TP53), and Kasumi-1 cell line (mutant TP53). The cells were treated with nanomolar doses of AZA or DAC for 3 consecutive days, and then harvested for subsequent analysis. The sensitivity of HMA on individual cell lines was determined by the growth curves and methylcellulose colony formation assays. We investigated whether p53 and its target genes, such as those related to pro-apoptosis (Bax, Bmf, Bak1, Bad), cell cycle (Gadd45a), p53 regulator (mdm2) were activated following DAC or AZA treatment. Further, the results will be validated in primary leukemic blasts from patients. Different cell lines exhibit different sensitivity to HMA. Kasumi-1, a p53 mutant cell line, is the most sensitive one to HMA based on growth curve and colony formation assay. However, reversal of mutant p53 dysfunction is not evident in Kasumi-1 cells. There was no decline in p53 protein, and no changes in gene expression of p53 target genes related to cell cycles and apoptosis. Therefore, the inhibitory effects of nanomolar HMA on Kasumi-1 cells appeared to be independent of p53-mediated apoptosis or cell cycle pathways. Our data is useful as a guidance for clinicians to use AZA. We believe that our study will eventually provide useful clinical parameters and molecular determinants as important biomarkers to predict HMA response. The HMA treated cell line model is useful for future mechanistic studies. It is feasible to modify the p53 status and study the associated pathway changes in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:16:45Z (GMT). No. of bitstreams: 1 ntu-107-P05421022-1.pdf: 9394566 bytes, checksum: c85b45e1ce82e841eb5770b716ccbec0 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書………………………………………………………………. i
誌謝………………………………………………………………………………. ii 中文摘要…………………………………………………………………………. iii 英文摘要…………………………………………………………………………. v 碩士論文內容 1. Introduction... 1 1.1 Overview of acute myeloid leukemia (AML)... 1 1.2 Genetic mutations of AML...1 1.3 Treatment of AML ...2 1.4 Mechanism of Hypomethylating agents (HMA) and their role in AML... 2 1.5 Predicting HMA response in AML...3 1.6 Role of p53 tumor suppressor gene in the pathogenesis of AML ...5 1.7 Study rationale and hypothesis....6 2. Material and methods....8 2.1 Subjects...8 2.2 Assessment of clinical response ...8 2.3 AZA treatment dosage and schedule ...8 2.4 Cytogenetics of AML patients ...9 2.5 Mutation analysis of AML patients ....9 2.6 Statistical analysis....9 2.7 Cell culture and drug treatment ...10 2.8 Methylcellulose Colony-Forming Assay...10 2.9 Quantative real-time PCR ...10 2.10 Western blot ...11 3.Results ...13 3.1 Patient characteristics ...13 3.2 Survival ...13 3.3 Effect of Clinical parameters on AZA response ...14 3.4 Mutation landscape and its association with AZA response...14 3.5 AML Cell Lines Have Differential Sensitivities to AZA Versus DAC ...15 3.6 Low dose HMA on leukemic cells...15 3.7 DNMT1 and p53 statuses after HMA treatment...16 3.8 DNA damage analysis after HMA treatment...17 3.9 p53 target gene expression change after HMA treatment...17 4. Discussion ...18 4.1 Clinical use of Azacitidine in AML patients...18 4.2 TP53 mutation as a predictor of HMA response……..18 4.3 Low dose HMA is more akin to physiologic condition ...19 4.4 HMA did not reverse p53 dysfunction in AML cell lines...20 4.5 Limitations...21 4.6 Conclusion...22 5. Future perspectives...23 6. Reference ...24 7. Figures and tables ...29 Table 1. TruSight Myeloid Sequencing Panel Gene List ...29 Table 2. Characteristics of AML cell lines ...29 Table 3. Baseline Characteristics at AZA treatment start...30 Table 4. Response to AZA in AML patients ...31 Table 5. Comparison of clinical parameters between AZA responders and non-responders in 1st line treated patients ...32 Table 6. The studies of AZA in AML patients...34 Figure 1. The mutation landscape of first-line AZA treated patients ...35 Figure 2. AZA and DAC differentially affect cell viability in kasumi-1 cell line...36 Figure 3. Growth curve of kasumi-1 cells under HMA...37 Figure 4. Growth curve of OCI-AML3 cells under HMA ...38 Figure 5. Growth curve of THP-1 cells under HMA ...39 Figure 6. Confirmation of HMA effect in Kasumi-1 cells (A) and THP-1 cells ...40 Figure 7. HMA blunts kasumi-1 cell growth in colony formation assay ...41 Figure 8. DAC effect on OCI-AML3 cell growth in colony formation assay ...42 Figure 9. AZA effect on OCI-AML3 cell growth in colony formation assay ...43 Figure 10. DAC effect on THP-1 cell growth in colony formation assay ...44 Figure 11. AZA effect on THP-1 cell growth in colony formation assay ...45 Figure 12. baseline p53 status in individual cell lines and the expression change under HMA...46 Figure 13. Nanomolar HMA without obvious DNA damage in kasumi-1 cells ...47 Figure 14. mRNA expression change in kasumi-1 cells after HMA treatment in kasumi-1 cells ...48 8. Appendix:列出個人在碩博士班修業期間所發表之相關論文清冊 ...49 | |
| dc.language.iso | en | |
| dc.subject | 去甲基化藥物 | zh_TW |
| dc.subject | 急性骨髓性白血病 | zh_TW |
| dc.subject | p53基因 | zh_TW |
| dc.subject | azacitidine | zh_TW |
| dc.subject | hypomethylating agents | en |
| dc.subject | acute myeloid leukemia | en |
| dc.subject | p53 | en |
| dc.subject | azacitidine | en |
| dc.title | 去甲基化藥物對於急性骨髓性白血病治療的有效性與調控機轉 | zh_TW |
| dc.title | Treatment responses and mechanisms of hypomethylating agents in patients with acute myeloid leukemia | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 蔡幸真 | |
| dc.contributor.oralexamcommittee | 楊偉勛 | |
| dc.subject.keyword | 急性骨髓性白血病,去甲基化藥物,p53基因,azacitidine, | zh_TW |
| dc.subject.keyword | acute myeloid leukemia,hypomethylating agents,p53,azacitidine, | en |
| dc.relation.page | 49 | |
| dc.identifier.doi | 10.6342/NTU201804065 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-24 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 9.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
