Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7195
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張淑惠
dc.contributor.authorHsien-Chou Yehen
dc.contributor.author葉憲周zh_TW
dc.date.accessioned2021-05-19T17:40:08Z-
dc.date.available2024-08-27
dc.date.available2021-05-19T17:40:08Z-
dc.date.copyright2019-08-27
dc.date.issued2019
dc.date.submitted2019-08-13
dc.identifier.citationCortese, G., Gerds, T. A., and Anderson, P. K. (2013). Comparing predictions among competing risks models with time-dependent covariates. Statistics in Medicine, 32, 3089-3101.
Dancourt, V., Quantin, C., Abrahamowicz, M., Binquet, C., Alioum, A. and Faivre, J. (2004). Modeling recurrence in colorectal cancer. Journal of Clinical Epidemiology, 57, 243-251.
Dartigues, D-F., Gagnon, M., Barberger-Gateau, P., Letenneur, L., Commenges, D., Sauvel, C., Michel, P. and Salamon, R. (1992). The paquid epidemiological program on brain ageing. Neuroepidemiology, 14-18.
Etzioni, R., Pepe, M., Longton, G., Hu, C. and Goodman, G., (1999) Incorporating the time dimension in receiver operating characteristic curves: A case study of prostate cancer. Medical Decision Making, 19, 242-251.
Graf, E., Schmoor, C., Sauerbrei, W. and Schumacher, M. (1999). Assessment and comparison of prognostic classification schemes for survival data. Statistics in Medicine, 18, 2529-2545.
Hanley, J. A. and McNeil, B., (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143, 29-36.
Heagerty, P. J., and Zheng, Y. (2005) Survival Model Predictive Accuracy and ROC Curves. Biometrics, 61, 92-105.

Hilden, J., Habbema, J. D. F. and Bjerregard, B. (1978). The measurement of performance in probabilistic diagnosis III: methods based on continuous functions of the diagnostic probabilities. Methods of Information in Medicine, 17, 238-246.
Lakhal, L., Rivest, L. P., and Abdous, B. (2008). Estimating survival and association in a semicompeting risks model. Biometrics, 64, 180-188.
Laurie, JA., Moertel, CG., Fleming, TR., Wieand, HS., Leigh, JE., Rubin, J., McCormack, GW., Gerstner, JB., Krook, JE. and Malliard, J. (1989). Surgical adjuvant therapy of large-bowel carcinoma: An evaluation of levamisole and the combination of levamisole and fluorouracil: The North Central Cancer Treatment Group and the Mayo Clinic. Journal of Clinical Oncology, 7:1447-1456.
Linnet, K. (1989). Assessing diagnostic tests by a strictly proper scoring rule. Statistics in Medicine, 8, 609-618.
Mauguen, A., Rachet, B., Mathoulin-Pelissier, S., Macgrogan, G., Laurent, A., and Rondeau, V. (2013). Dynamic prediction of risk of death using history of cancer recurrences in joint frailty models. Statistics in Medicine, 32, 5366-5380.
Meira-Machado, L., and Sestelo, M. (2019). Estimation in the progressive illness-death model: A nonexhaustive review. Biometrical Journal, 61, 245-263.
Neri, A., Marrelli, D., Rossi, S., De Stefano, A., Mariani, F., De Marco, G., Caruso, S., Corso, G., Cioppa, T., Pinto, E. and Roviello, F. (2007). Breast cancer local recurrence: Risk factors and prognostic relevance of early time to recurrence. World Journal of Surgery, 31, 36-45.

Peng, W-C. (2010). Estimation of Conditional Survival probabilities using marker time as predictors. Division of Biostatistics, Graduate Institute of Epidemiology College of Public Health, National Taiwan University Master Thesis.
Porta, N., Calle, M. L., Malats, N., and Gomez, G. (2012). A dynamic model for the risk of bladder cancer progression. Statistics in Medicine, 31, 287-300.
Rizopoulos, D. (2011). Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data. Biometrics, 67, 819-829.
Rizopoulos, D., Murawska, M., Andrinopoulou, E-R., Molenberghs, G., Takkenberg, J. J. and Lesaffre, E. (2017). Dynamic predictions with time-dependent covariates in survival analysis using joint modeling and landmarking. Biometrical Journal, 59, 1261-1276.
Suresh, K., Jeremy, M.G.T., Daniel, E.S., Daignault, S. and Tsodikov, A. (2017). Comparison of joint modeling and landmarking for dynamic prediction under an illness-death model. Biometrical Journal, 59, 1277-1300.
Slate, E. H. and Turnbull, B. W. (2000). Statistical models for longitudinal biomarkers of disease onset. Statistical in Medicine, 19, 617-637.
Spiegelhalter, D. J. (1986). Probabilistic prediction in patient management and clinical trials. Statistics in Medicine, 5, 421-433.
Su, D-H. (2016). Statistical analysis for dynamic survival prediction involving marker processes. Division of Biostatistics, Graduate Institute of Epidemiology College of Public Health, National Taiwan University Doctoral Dissertation.
Taylor, J. M. G., Yu, M. and Sander, H. (2005). Individualized Predictions of Disease Progression Following Radiation Therapy for Prostate Cancer. Journal of Clinical Oncology, 23, 816-825.
Taylor, J. M. G., Park, Y., Ankerst, D. P., Proust-Lima, C., Williams, S., Kestin, L., Bae, K., Pickles, T. and Sandler, H. (2013). Real-time individual predictions of prostate cancer recurrence using joint models. Biometrics, 69, 206-213.
Whitmore, G. A., Crowder, M. J. and Lawless, J. F. (1998). Failure inference from a marker process based on a bivariate Wiener model. Lifetime Data Analysis 4, 229-251.
Yang, C-Y. (2009). Predicting survival with disease progression as a time-dependent covariate in proportional hazards model. Division of Biostatistics, Graduate Institute of Epidemiology College of Public Health, National Taiwan University Master Thesis.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7195-
dc.description.abstract在實際臨床應用上,準確地預測病患預後是一非常重要的議題。例如癌症病患的復發情況等生物標誌(biological marker),為隨時間變動的資訊,為臨床介入治療以及預測未來風險有用的指標。本文在不同特徵時間點(landmark time)下建構一系列以Cox為基礎型式的特徵點模式(landmark model),並加入隨時間變動標誌資訊進行未來存活機率之動態預測(dynamic prediction)。本文特別之處為,在不同特徵時間點下,建構以Cox為基礎型式之特徵點模式時,針對病患進入研究後至發生標誌事件之標誌時間(marker time)轉化為時間分段函數,更運用此隨時間改變之資訊納入模式,此想法對於在進行未來存活機率預測時,針對時間依賴性資訊處理會更為貼切。在模擬部分,考慮三種標誌時間及存活時間之間不同的相關性結構,並以文中所建構Cox為基礎型式的特徵點模式進行動態預測,比較其表現。最後文中也以大腸直腸癌及阿茲海默症實際資料為例,探討本文所考慮之特徵點模式其動態預測的表現。zh_TW
dc.description.abstractAn important issue in clinical practice is to accurately predict the prognosis of patients in order to aid clinical decision-making. Biological markers, for example, recurrences in cancer patients, often serve as time-dependent information in the need of clinical intervention and the usefulness of the prediction of future risk. We consider several landmark Cox-type models at a sequence of landmark times to incorporate the time-dependent marker information for dynamic prediction of future survival probabilities. In particular, a piecewise function of the time to a marker included in the Cox-type model at each landmark time may be more adaptable to use the time-dependent marker information for predicting future survival probabilities. In simulation study, we consider three different correlation structures between the marker and survival times to assess the performance of dynamic prediction based on different landmark Cox-type models. Finally, we use colon cancer and dementia data to explore the dynamic prediction abilities under these landmark Cox-type models.en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:40:08Z (GMT). No. of bitstreams: 1
ntu-108-R06849031-1.pdf: 3058132 bytes, checksum: c45c44315968b7d623a6755ad07ddd79 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
圖目錄 vi
表目錄 ixx
第一章 研究動機與目的 1
第二章 文獻回顧 4
第一節 以標誌時間為預測因子的條件存活機率估計 4
第二節 標誌歷程之動態存活預測的統計分析 6
第三節 ROC 曲線 7
第四節 Brier 分數 8
第五節 以時間相依共變數比較聯合模式及特徵點模式預測結果 10
第六節 疾病進展資料下比較特徵點模式及聯合模式預測結果 11
第三章 研究方法 12
第四章 模擬 15
第一節 資料生成 15
第二節 模擬結果 18
第五章 實例分析 29
第一節 大腸直腸癌研究 29
第二節 PAQUID研究 35
第六章 討論與總結 42
第七章 參考文獻 44
附錄 48
dc.language.isozh-TW
dc.title探討半競爭風險資料下之不同特徵點比例風險模式動態預測表現zh_TW
dc.titleComparison of dynamic prediction of different landmark proportional hazard model under semi-competing risks dataen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee戴政,蔡政安,陳秀熙
dc.subject.keyword動態預測,特徵點模式,多階段模式,zh_TW
dc.subject.keywordDynamic prediction,landmark model,multi-state model,en
dc.relation.page74
dc.identifier.doi10.6342/NTU201903431
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-08-14
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
dc.date.embargo-lift2024-08-27-
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf2.99 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved