請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71949完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 侯嘉洪(Chia-Hung Hou) | |
| dc.contributor.author | Ching-Hui Chen | en |
| dc.contributor.author | 陳靖蕙 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:16:12Z | - |
| dc.date.available | 2020-11-13 | |
| dc.date.copyright | 2020-11-13 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-10-14 | |
| dc.identifier.citation | Anderson, M. A., Cudero, A. L., Palma, J. (2010). Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochimica Acta, 55(12), 3845-3856. Al-Enezi, G., Fawzi, N. (2003). Design consideration of RO units: case studies. Desalination, 153(1-3), 281-286. Bartels, C., Hirose, M., Fujioka, H. (2008). Performance advancement in the spiral wound RO/NF element design. Desalination, 221(1), 207-214. Biesheuvel, P., Van der Wal, A. (2010). Membrane capacitive deionization. Journal of Membrane Science, 346(2), 256-262. Blair, J. W., Murphy, G. W. (1960). Electrochemical demineralization of water with porous electrodes of large surface area: ACS Publications. Bouhadana, Y., Avraham, E., Noked, M., Ben-Tzion, M., Soffer, A., Aurbach, D. (2011). Capacitive deionization of NaCl solutions at non-steady-state conditions: inversion functionality of the carbon electrodes. The Journal of Physical Chemistry C, 115(33), 16567-16573. Bourgeous, K. N., Darby, J. L., Tchobanoglous, G. (2001). Ultrafiltration of wastewater: effects of particles, mode of operation, and backwash effectiveness. Water research, 35(1), 77-90. Buer, T., Cumin, J. (2010). MBR module design and operation. Desalination, 250(3), 1073-1077. Cadotte, J., Petersen, R., Larson, R., Erickson, E. (1980). A new thin-film composite seawater reverse osmosis membrane. Desalination, 32, 25-31. Chen, H., Yeh, H.-H., Shiau, S. (2005). The membrane application on the wastewater reclamation and reuse from the effluent of industrial WWTP in northern Taiwan. Desalination, 185(1-3), 227-239. Chiarle, S., Ratto, M., Rovatti, M. (2000). Mercury removal from water by ion exchange resins adsorption. Water research, 34(11), 2971-2978. Choi, J., Oh, Y., Chae, S., Hong, S. (2019). Membrane capacitive deionization-reverse electrodialysis hybrid system for improving energy efficiency of reverse osmosis seawater desalination. Desalination, 462, 19-28. Chung, S., Kim, S., Kim, J.-O., Chung, J. (2014). Feasibility of combining reverse osmosis–ferrite process for reclamation of metal plating wastewater and recovery of heavy metals. Industrial Engineering Chemistry Research, 53(39), 15192-15199. Elimelech, M., Phillip, W. A. (2011). The future of seawater desalination: energy, technology, and the environment. science, 333(6043), 712-717. Farmer, J. C., Fix, D. V., Mack, G. V., Pekala, R. W., Poco, J. F. (1996). Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes. Journal of the Electrochemical Society, 143(1), 159. Fritzmann, C., Löwenberg, J., Wintgens, T., Melin, T. (2007). State-of-the-art of reverse osmosis desalination. Desalination, 216(1-3), 1-76. Gabelich, C. J., Tran, T. D., Suffet, I. M. (2002). Electrosorption of inorganic salts from aqueous solution using carbon aerogels. Environmental science technology, 36(13), 3010-3019. Gao, Y., Pan, L., Li, H., Zhang, Y., Zhang, Z., Chen, Y., Sun, Z. (2009). Electrosorption behavior of cations with carbon nanotubes and carbon nanofibres composite film electrodes. Thin Solid Films, 517(5), 1616-1619. García-Quismondo, E., Santos, C., Lado, J., Palma, J., Anderson, M. A. (2013). Optimizing the energy efficiency of capacitive deionization reactors working under real-world conditions. Environmental science technology, 47(20), 11866-11872. Glueckstern, P., Priel, M. (2007). Boron removal in brackish water desalination systems. Desalination, 205(1-3), 178-184. Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B., Moulin, P. (2009). Reverse osmosis desalination: water sources, technology, and today's challenges. Water research, 43(9), 2317-2348. Hamed, O. A. (2005). Overview of hybrid desalination systems—current status and future prospects. Desalination, 186(1-3), 207-214. Hou, C.-H., Huang, C.-Y. (2013). A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization. Desalination, 314, 124-129. Hou, C.-H., Huang, J.-F., Lin, H.-R., Wang, B.-Y. (2012). Preparation of activated carbon sheet electrode assisted electrosorption process. Journal of the Taiwan Institute of Chemical Engineers, 43(3), 473-479. Hou, C., Huang, C., Hu, C. (2013). Application of capacitive deionization technology to the removal of sodium chloride from aqueous solutions. International Journal of Environmental Science and Technology, 10(4), 753-760. Huang, Z., Lu, L., Cai, Z., Ren, Z. J. (2016). Individual and competitive removal of heavy metals using capacitive deionization. Journal of hazardous materials, 302, 323-331. Humplik, T., Lee, J., O’hern, S., Fellman, B., Baig, M., Hassan, S., . . . Karnik, R. (2011). Nanostructured materials for water desalination. Nanotechnology, 22(29), 292001. Jande, Y., Minhas, M. B., Kim, W.-S. (2015). Ultrapure water from seawater using integrated reverse osmosis-capacitive deionization system. Desalination and water treatment, 53(13), 3482-3490. Jeon, S.-i., Park, H.-r., Yeo, J.-g., Yang, S., Cho, C. H., Han, M. H., Kim, D. K. (2013). Desalination via a new membrane capacitive deionization process utilizing flow-electrodes. Energy Environmental Science, 6(5), 1471-1475. Jung, H.-H., Hwang, S.-W., Hyun, S.-H., Lee, K.-H., Kim, G.-T. (2007). Capacitive deionization characteristics of nanostructured carbon aerogel electrodes synthesized via ambient drying. Desalination, 216(1-3), 377-385. Kang, J., Kim, T., Jo, K., Yoon, J. (2014). Comparison of salt adsorption capacity and energy consumption between constant current and constant voltage operation in capacitive deionization. Desalination, 352, 52-57. Kim, J., Hong, S. (2018). A novel single-pass reverse osmosis configuration for high-purity water production and low energy consumption in seawater desalination. Desalination, 429, 142-154. Kim, Y.-J., Choi, J.-H. (2010). Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane. separation and Purification Technology, 71(1), 70-75. Kucera, J. (2015). Reverse Osmosis: Industrial Processes and Applications: John Wiley Sons. Katz, W. E. (1979). The electrodialysis reversal (EDR) process. Desalination, 28(1), 31-40. Kawahara, T. (1994). Construction and operation experience of a large-scale electrodialysis water desalination plant. Desalination, 96(1-3), 341-348. Lee, J.-B., Park, K.-K., Eum, H.-M., Lee, C.-W. (2006). Desalination of a thermal power plant wastewater by membrane capacitive deionization. Desalination, 196(1-3), 125-134. Lee, J.-H., Choi, J.-H. (2012). The production of ultrapure water by membrane capacitive deionization (MCDI) technology. Journal of Membrane Science, 409, 251-256. Li, H., Gao, Y., Pan, L., Zhang, Y., Chen, Y., Sun, Z. (2008). Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes. Water research, 42(20), 4923-4928. Li, H., Zou, L., Pan, L., Sun, Z. (2010). Novel graphene-like electrodes for capacitive deionization. Environmental science technology, 44(22), 8692-8697. Minhas, M. B., Jande, Y. A., Kim, W. S. (2014). Hybrid Reverse Osmosis‐Capacitive Deionization versus Two‐Stage Reverse Osmosis: A Comparative Analysis. Chemical Engineering Technology, 37(7), 1137-1145. Mulder, M. (2012). Basic principles of membrane technology: Springer Science Business Media. Murphy, G., Caudle, D. (1967). Mathematical theory of electrochemical demineralization in flowing systems. Electrochimica Acta, 12(12), 1655-1664. Minhas, M. B., Jande, Y., Kim, W.-S. (2014). Combined reverse osmosis and constant-current operated capacitive deionization system for seawater desalination. Desalination, 344, 299-305. Ogoshi, M., Suzuki, Y., Asano, T. (2001). Water reuse in Japan. Water Science and Technology, 43(10), 17-23. Pellegrino, J., Gorman, C., Richards, L. (2007). A speculative hybrid reverse osmosis/electrodialysis unit operation. Desalination, 214(1-3), 11-30. Porada, S., Zhao, R., Van Der Wal, A., Presser, V., Biesheuvel, P. (2013). Review on the science and technology of water desalination by capacitive deionization. Progress in materials science, 58(8), 1388-1442. Qu, Y., Campbell, P. G., Gu, L., Knipe, J. M., Dzenitis, E., Santiago, J. G., Stadermann, M. (2016). Energy consumption analysis of constant voltage and constant current operations in capacitive deionization. Desalination, 400, 18-24. Rengaraj, S., Yeon, K.-H., Moon, S.-H. (2001). Removal of chromium from water and wastewater by ion exchange resins. Journal of hazardous materials, 87(1-3), 273-287. Rommerskirchen, A., Gendel, Y., Wessling, M. (2015). Single module flow-electrode capacitive deionization for continuous water desalination. Electrochemistry Communications, 60, 34-37. Ryoo, R., Joo, S. H., Jun, S. (1999). Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. The Journal of Physical Chemistry B, 103(37), 7743-7746. Sanza, M. A., Bonnélyea, V., Cremerb, G. (2007). Fujairah reverse osmosis plant: 2 years of operation. Desalination, 203(1-3), 91-99. Sauvet-Goichon, B. (2007). Ashkelon desalination plant—a successful challenge. Desalination, 203(1-3), 75-81. Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Marinas, B. J., Mayes, A. M. (2010). Science and technology for water purification in the coming decades Nanoscience and technology: a collection of reviews from nature Journals (pp. 337-346): World Scientific. Shatat, M., Worall, M., Riffat, S. (2013). Opportunities for solar water desalination worldwide. Sustainable cities and society, 9, 67-80. Sridhar, S., Kale, A., Khan, A. (2002). Reverse osmosis of edible vegetable oil industry effluent. Journal of Membrane Science, 205(1-2), 83-90. Steven, P. Y., Matunas, F. C., Zwetkow, N. (1983). Reverse osmosis hollow fiber filter element: Google Patents. Strathmann, H. (2010). Electrodialysis, a mature technology with a multitude of new applications. Desalination, 264(3), 268-288. Thampy, S., Desale, G. R., Shahi, V. K., Makwana, B. S., Ghosh, P. K. (2011). Development of hybrid electrodialysis-reverse osmosis domestic desalination unit for high recovery of product water. Desalination, 282, 104-108. Wang, G., Zhang, L., Zhang, J. (2012). A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 41(2), 797-828. Welgemoed, T., Schutte, C. F. (2005). Capacitive deionization technology™: an alternative desalination solution. Desalination, 183(1-3), 327-340. Wenten, I. (2016). Reverse osmosis applications: prospect and challenges. Desalination, 391, 112-125. Yan, C., Kanaththage, Y. W., Short, R., Gibson, C. T., Zou, L. (2014). Graphene/Polyaniline nanocomposite as electrode material for membrane capacitive deionization. Desalination, 344, 274-279. Yang, S., Choi, J., Yeo, J.-g., Jeon, S.-i., Park, H.-r., Kim, D. K. (2016). Flow-electrode capacitive deionization using an aqueous electrolyte with a high salt concentration. Environmental science technology, 50(11), 5892-5899. Yu, T.-H., Shiu, H.-Y., Lee, M., Chiueh, P.-T., Hou, C.-H. (2016). Life cycle assessment of environmental impacts and energy demand for capacitive deionization technology. Desalination, 399, 53-60. Zagorodni, A. A. (2006). Ion exchange materials: properties and applications: Elsevier. Zou, L., Li, L., Song, H., Morris, G. (2008). Using mesoporous carbon electrodes for brackish water desalination. Water research, 42(8-9), 2340-2348. Zhu, A., Christofides, P. D., Cohen, Y. (2009). Energy consumption optimization of reverse osmosis membrane water desalination subject to feed salinity fluctuation. Industrial Engineering Chemistry Research, 48(21), 9581-9589. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71949 | - |
| dc.description.abstract | 近年來,由於人口蓬勃發展以及快速的經濟發展,水資源的需求日益增加,使得水資源匱乏的問題在世界各地受到重視。然而,河流,湖泊和地下水等淡水的來源不足以供應人們的日常需求。因此,目前已開發許多淨水技術,用於從海水,微鹹水和工業用水中脫鹽以發展替代水資源。 逆滲透(Reverse osmosis, RO)為常見的淨水技術,常用於半鹽水/海水脫鹽、超純水製備及工業廢水處理。由於較高的壓力需求,逆滲透技術的能耗普遍偏高。然而,電容去離子(Capacitive deionization, CDI)為目前具有前瞻性的淨水技術,透過施加低電壓於兩側多孔碳電極上,使溶液中的離子受電場吸引而儲存於孔洞中,進而達到脫鹽的目的。此技術具有低能耗,操作簡易及環境友好的優點。進一步地,薄膜電容去離子(Membrane capacitive deionization, MCDI)透過將離子交換樹脂薄膜(Ion exchange membranes, IEMs)放置於電極表面,藉由IEM的電性選擇特性,於電吸附過程中減緩同離子(co-ion)效應的影響,因而提升整體的去除容量及電荷效率。 此研究目的為評估以MCDI提升RO平板過濾模組的處理效能,透過於MCDI放電階段施加反向電壓以及調控幫浦靜置時間進行程序控制,並找出MCDI最佳運行條件,進而降低整體比能耗、提高整體水回收率及提升產品水水質以符合Class A的再生水水質標準。首先,以濃度2000 mg/L的氯化鈉溶液模擬工業用水,作為兩級RO系統和RO-MCDI混合系統的進流,再以實際工業用水作為進流。由實驗結果得知,在最佳操作模式下,MCDI能達成去除率99.99%,且水回收率達75%。再者,由兩級RO系統和RO-MCDI混合系統處理工業用水之結果,其導電度分別降至94.83 μS/cm和12.27 μS/cm,總水回收率分別為4.25%和15.57%,總比能耗分別為3.272 kWh/m3和2.819 kWh/m3。顯示出MCDI能提升整體RO產品水水質,提高整體水回收率並降低整體比能耗且具有應用於工業之再生水處理之潛力。 由於MCDI系統具有良好之去離子效能,同時,處理過程中僅需較低之比能耗。因此,在最佳操作模式下能有效提升水回收率,進而提高整體RO系統之水回收率與產水水質,使透過MCDI優化之RO系統於再生水處理流程中具備良好的應用潛力,可作為一清淨節能之再生水處理流程。 | zh_TW |
| dc.description.abstract | The demand of fresh water has increased over the past decades around the worldwide due to the rapid population and economic development, and the sources of fresh water such as rivers, lakes and groundwater are insufficient for daily consumption. Many water purification technologies have been developed for water desalination from seawater, brackish water and industrial water. Reverse osmosis (RO) is a common technology for fresh water production from seawater or brackish water. Due to the high pressure demand, the RO system shows high specific energy consumption. Capacitive deionization (CDI), is a promising technology for water desalination, has advantages in low energy consumption, easy operation and environmental friendliness. Recently, membrane capacitive deionization (MCDI) has been developed, using ion exchange membranes on the electrodes to block the co-ions effect. Hence, the removal capacity and charge efficiency of MCDI is better than CDI. The objective of this study is to enhance the performance of RO system with MCDI, by applying the reverse voltage and adjusting the standing time of the pump during the discharge process, and figuring out the optimal operating conditions of MCDI system to further reduce the overall specific energy consumption, enhance the overall water recovery, improve the permeate water quality to meet the Class A reuse water standard. Firstly, for industrial water simulation experiment, the concentration of 2000 mg/L sodium chloride is used as influent for two-pass RO system and RO-MCDI hybrid system. From the experimental result of MCDI under optimal operating conditions, the water recovery increases to 75%, the rejection rate reaches to 99.99%. Furthermore, from the results which use the industrial water as influent for two systems, the conductivity of two-pass RO system decreases to 94.83 μS/cm whereas that of RO-MCDI hybrid system decreases to 12.27 μS/cm. The overall water recovery of the former system is 4.25% while the latter one is 15.57%. And the overall specific energy consumption of both systems are 3.272 kWh/m3 and 2.819 kWh/m3, respectively. It can be shown that the use of MCDI system can reduce the overall specific energy consumption, enhance the overall water recovery, improve the permeate water quality. Furthermore, it is feasible to apply to industrial water treatment. Due to the MCDI system has good deionization performance under optimal operating condition, it can enhance the overall performance of RO, and consume lower energy, enhance the overall water recovery and have good application potential in the reclaimed water treatment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:16:12Z (GMT). No. of bitstreams: 1 U0001-1410202012142600.pdf: 4588690 bytes, checksum: 81b649d0d4281209eff66ed3a512e591 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝 i 中文摘要 iii Abstract iv Contents vi List of Figures ix List of Tables xiii Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation and objectives 1 Chapter 2 Theory and Literature Review 3 2.1 Cases of water reclamation and reuse 3 2.2 Desalination technologies for water reclaimation 10 2.2.1 Ion exchange process 10 2.2.2 Membrane filtration technology. 11 2.2.3 Electrodialysis (ED) technology 14 2.3 Reverse osmosis (RO) for desalination 15 2.3.1 The principle and classification of RO 15 2.3.2 The operating conditions and design of RO system 15 2.3.3 Classification of RO membranes 17 2.3.4 RO application for water reuse 18 2.4 Development of Capacitive Deionization 19 2.4.1 The principle of CDI 19 2.4.2 The operating geometries and modes of CDI system 20 2.4.3 The materials of (M)CDI electrodes 21 2.4.4 (M)CDI application for water reuse 22 2.5 Hybrid system for water reuse 24 Chapter 3 Experimental Section 27 3.1 Materials and Instruments 27 3.2 Lab-scale reverse osmosis system 30 3.3 Activated carbon electrodes 33 3.4 Setup of MCDI system 35 3.5 RO-MCDI hybrid system 37 3.6 Key indexes of RO and MCDI system 39 3.6.1 Reverse osmosis 39 3.6.2 Membrane capacitive deionization 41 3.6.3 Two-pass RO system 44 3.6.4 RO-MCDI hybrid system 45 Chapter 4 Results and Discussion 47 4.1 Performance of RO system 47 4.1.1 Effect of various water recovery on the salt rejection and specific energy consumption 47 4.1.2 Effect of various feed concentrations and applied pressure on the salt rejection 49 4.1.3 Effect of various feed concentrations and applied pressure on the permeate water flux and specific energy consumption 50 4.2 Performance of MCDI system 53 4.3 Performance of two-pass RO system and RO-MCDI hybrid system 59 4.3.1 Two-pass RO system performance 59 4.3.2 MCDI performance for treating first-pass RO permeate 61 4.3.3 The comparison of two-pass RO system and RO-MCDI hybrid system 67 4.4 Performance of two-pass RO system and RO-MCDI hybrid system for industrial water treatment 69 4.4.1 Two-pass RO system performance for industrial water treatment 70 4.4.2 MCDI performance for treating first-pass RO permeate for industrial water treatment 72 4.4.3 The comparison of two-pass RO system and RO-MCDI hybrid system for industrial water treatment 77 Chapter 5 Conclusions and Suggestions 80 5.1 Conclusions 80 5.2 Suggestions 80 References 82 | |
| dc.language.iso | zh-TW | |
| dc.subject | 混合系統 | zh_TW |
| dc.subject | 水回收率 | zh_TW |
| dc.subject | 比能耗 | zh_TW |
| dc.subject | 逆滲透 | zh_TW |
| dc.subject | 薄膜電容去離子 | zh_TW |
| dc.subject | Membrane capacitive deionization | en |
| dc.subject | Reverse osmosis | en |
| dc.subject | Hybrid system | en |
| dc.subject | Specific energy consumption | en |
| dc.subject | Water recovery | en |
| dc.title | 整合薄膜電容去離子與逆滲透技術應用於再生水處理系統之效能提升 | zh_TW |
| dc.title | An integrated membrane capacitive deionization and reverse osmosis system for improving performance of water reclamation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李公哲(Kung-Cheh Li),林進榮(Chin-Jung Lin),范振軒(Chen-Shiuan Fan) | |
| dc.subject.keyword | 逆滲透,薄膜電容去離子,混合系統,比能耗,水回收率, | zh_TW |
| dc.subject.keyword | Reverse osmosis,Membrane capacitive deionization,Hybrid system,Specific energy consumption,Water recovery, | en |
| dc.relation.page | 89 | |
| dc.identifier.doi | 10.6342/NTU202004265 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-10-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1410202012142600.pdf 未授權公開取用 | 4.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
