Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71948
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳慧文(Hui-Wen Chen)
dc.contributor.authorZih-Syun Fangen
dc.contributor.author方紫珣zh_TW
dc.date.accessioned2021-06-17T06:16:09Z-
dc.date.available2019-06-14
dc.date.copyright2019-06-14
dc.date.issued2018
dc.date.submitted2018-03-24
dc.identifier.citation1. CDC & NCIRD. Selecting viruses for the seasonal influenza vaccine, <https://www.cdc.gov/flu/about/season/vaccine-selection.htm> (2016).
2. Ozawa, S. et al. Modeling the economic burden of adult vaccine-preventable diseases in the united states. Health Aff (Millwood) 35, 2124-2132, doi:10.1377/hlthaff.2016.0462 (2016).
3. Lupiani, B. & Reddy, S. M. The history of avian influenza. Comp Immunol Microbiol Infect Dis 32, 311-323, doi:10.1016/j.cimid.2008.01.004 (2009).
4. Goto, H. & Kawaoka, Y. Influenzavirus A in The Springer Index of Viruses (eds C. & G.) 1005-1011 (Springer New York, 2011).
5. Medina, R. A. & Garcia-Sastre, A. Influenza A viruses: new research developments. Nat Rev Microbiol 9, 590-603, doi:10.1038/nrmicro2613 (2011).
6. Bean, A. G. et al. Studying immunity to zoonotic diseases in the natural host - keeping it real. Nat Rev Immunol 13, 851-861, doi:10.1038/nri3551 (2013).
7. WHO. National influenza centres, <http://www.who.int/influenza/gisrs_laboratory/
national_influenza_centres/list/en/> (2017).
8. Air, G. M. Influenzavirus B in The Springer Index of Viruses (eds C. & G.) 1013-1017 (Springer New York, 2011).
9. Hongo, S. & Herrler, G. Influenzavirus C in The Springer Index of Viruses (eds C. & G.) 1019-1023 (Springer New York, 2011).
10. Calvo, C. et al. Influenza C virus infection in children, spain. Emerg Infect Dis 12, 1621-1622, doi:10.3201/eid1210.051170 (2006).
11. Luo, J. et al. Serological evidence for high prevalence of influenza D viruses in cattle, Nebraska, United States, 2003-2004. Virology 501, 88-91, doi:10.1016/j.virol.2016.11.004 (2017).
12. Ferguson, L. et al. Pathogenesis of influenza D virus in cattle. J Virol 90, 5636-5642, doi:10.1128/jvi.03122-15 (2016).
13. Dortmans, J. C. et al. Adaptation of novel H7N9 influenza A virus to human receptors. Sci Rep 3, 3058, doi:10.1038/srep03058 (2013).
14. Chaipan, C. et al. Proteolytic activation of the 1918 influenza virus hemagglutinin. J Virol 83, 3200-3211, doi:10.1128/jvi.02205-08 (2009).
15. Fontana, J. et al. Structural changes in influenza virus at low pH characterized by cryo-electron tomography. J Virol 86, 2919-2929, doi:10.1128/jvi.06698-11 (2012).
16. Stauffer, S. et al. Stepwise priming by acidic pH and a high K+ concentration is required for efficient uncoating of influenza A virus cores after penetration. J Virol 88, 13029-13046, doi:10.1128/jvi.01430-14 (2014).
17. Nicholls, J. M. et al. Sialic acid receptor detection in the human respiratory tract: evidence for widespread distribution of potential binding sites for human and avian influenza viruses. Resp Res 8, 73-73, doi:10.1186/1465-9921-8-73 (2007).
18. Varki, A. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature 446, 1023-1029, doi:10.1038/nature05816 (2007).
19. de Graaf, M. & Fouchier, R. A. M. Role of receptor binding specificity in influenza A virus transmission and pathogenesis. The EMBO Journal 33, 823-841, doi:10.1002/embj.201387442 (2014).
20. Liu, Y. et al. Influenza A virus receptors in the respiratory and intestinal tracts of pigeons. Avian Pathol 38, 263-266, doi:10.1080/03079450903055363 (2009).
21. Bodewes, R. et al. Infection of the upper respiratory tract with seasonal influenza A(H3N2) virus induces protective immunity in ferrets against infection with A(H1N1)pdm09 virus after intranasal, but not intratracheal, inoculation. J Virol 87, 4293-4301, doi:10.1128/jvi.02536-12 (2013).
22. van Riel, D. et al. Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals. Am J Pathol 171, 1215-1223, doi:10.2353/ajpath.2007.070248 (2007).
23. Carrat, F. et al. Time lines of infection and disease in human influenza: a review of volunteer challenge studies. Am J Epidemiol 167, 775-785, doi:10.1093/aje/kwm375 (2008).
24. Walsh, K. B. et al. Suppression of cytokine storm with a sphingosine analog provides protection against pathogenic influenza virus. Proc Natl Acad Sci U S A 108, 12018-12023, doi:10.1073/pnas.1107024108 (2011).
25. Nguyen, J. T. et al. Efficacy of combined therapy with amantadine, oseltamivir, and ribavirin in vivo against susceptible and amantadine-resistant influenza A viruses. PLoS One 7, e31006, doi:10.1371/journal.pone.0031006 (2012).
26. Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8, 96, doi:10.3390/v8040096 (2016).
27. CDC. Guidance for clinicians on the use of rapid influenza diagnostic tests, <https://www.cdc.gov/flu/pdf/professionals/diagnosis/clinician_guidance_ridt.pdf> (2014).
28. Lembo, D. & Cavalli, R. Nanoparticulate delivery systems for antiviral drugs. Antivir Chem Chemother 21, 53-70, doi:10.3851/IMP1684 (2010).
29. Moss, D. M. & Siccardi, M. Optimizing nanomedicine pharmacokinetics using physiologically based pharmacokinetics modelling. Br J Pharmacol 171, 3963-3979, doi:10.1111/bph.12604 (2014).
30. Szunerits, S. et al. Nanostructures for the inhibition of viral infections. Molecules 20, 14051-14081, doi:10.3390/molecules200814051 (2015).
31. Yan, N. et al. Simultaneous determination of size and quantification of gold nanoparticles by direct coupling thin layer chromatography with catalyzed luminol chemiluminescence. Sci Rep 6, 24577, doi:10.1038/srep24577 (2016).
32. Anselmo, A. C. & Mitragotri, S. A review of clinical translation of inorganic nanoparticles. The AAPS Journal 17, 1041-1054, doi:10.1208/s12248-015-9780-2 (2015).
33. Xu, Q. et al. Impact of surface polyethylene glycol (PEG) density on biodegradable nanoparticle transport in mucus ex vivo and distribution in vivo. ACS Nano 9, 9217-9227, doi:10.1021/acsnano.5b03876 (2015).
34. Liu, X. et al. Irinotecan delivery by lipid-coated mesoporous silica nanoparticles shows improved efficacy and safety over liposomes for pancreatic cancer. ACS Nano 10, 2702-2715, doi:10.1021/acsnano.5b07781 (2016).
35. Makadia, H. K. & Siegel, S. J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3, 1377-1397, doi:10.3390/polym3031377 (2011).
36. Joung, Y. K. et al. Sustained cytoplasmic delivery and anti-viral effect of PLGA nanoparticles carrying a nucleic acid-hydrolyzing monoclonal antibody. Pharm Res 29, 932-942, doi:10.1007/s11095-011-0633-0 (2012).
37. Schleich, N. et al. Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapy and magnetic resonance imaging. Int J Pharm 447, 94-101, doi:10.1016/j.ijpharm.2013.02.042 (2013).
38. Cho, N. H. et al. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat Nanotechnol 6, 675-682 (2011).
39. Driskell, J. D. et al. One-step assay for detecting influenza virus using dynamic light scattering and gold nanoparticles. Analyst 136, 3083-3090, doi:10.1039/c1an15303j (2011).
40. 周子琪. 奈米科技於禽流感病毒偵測上的應用, 臺灣大學, (2008).
41. 林以立. 奈米流道生物感測研究, 臺灣大學, (2016).
42. Park, H. J. et al. Early diagnosis of influenza virus a using surface‐enhanced raman scattering‐based lateral flow assay. B Kor Chem Soc 37, 2019-2024 (2016).
43. Bantia, S. et al. A single intramuscular injection of neuraminidase inhibitor peramivir demonstrates antiviral activity against novel pandemic A/California/04/2009 (H1N1) influenza virus infection in mice. Antiviral Res 90, 17-21, doi:10.1016/j.antiviral.2011.02.001 (2011).
44. Watanabe, T. & Kawaoka, Y. Influenza virus–host interactomes as a basis for antiviral drug development. Curr Opin Virol 14, 71-78, doi:http://dx.doi.org/10.1016/j.coviro.2015.08.008 (2015).
45. Tarbet, E. B. et al. A zanamivir dimer with prophylactic and enhanced therapeutic activity against influenza viruses. J Antimicrob Chemother 69, 2164-2174, doi:10.1093/jac/dku127 (2014).
46. Belser, J. A. et al. DAS181, a novel sialidase fusion protein, protects mice from lethal avian influenza H5N1 virus infection. Int J Infect Dis 196, 1493-1499, doi:10.1086/522609 (2007).
47. Kiso, M. et al. T-705 (favipiravir) activity against lethal H5N1 influenza A viruses. Proc Natl Acad Sci U S A 107, 882-887, doi:10.1073/pnas.0909603107 (2010).
48. Sangawa, H. et al. Mechanism of action of T-705 ribosyl triphosphate against influenza virus RNA polymerase. Antimicrob Agents Chemother 57, 5202-5208, doi:10.1128/aac.00649-13 (2013).
49. Kwon, S. J. et al. Nanostructured glycan architecture is important in the inhibition of influenza A virus infection. Nat Nanotechnol 12, 48-54, doi:10.1038/nnano.2016.181 (2017).
50. Li, Yinghua et al. Silver nanoparticle based codelivery of oseltamivir to inhibit the activity of the H1N1 influenza virus through ROS-mediated signaling pathways. ACS Appl Mater Inter 8, 24385-24393, doi:10.1021/acsami.6b06613 (2016).
51. Bimbo, L. M. et al. Inhibition of influenza A virus infection in vitro by saliphenylhalamide-loaded porous silicon nanoparticles. ACS Nano 7, 6884-6893, doi:10.1021/nn402062f (2013).
52. Lessler, J. et al. Incubation periods of acute respiratory viral infections: a systematic review. Lancet Infect Dis 9, 291-300, doi:10.1016/s1473-3099(09)70069-6 (2009).
53. Hu, C. M. et al. Multi-antigen avian influenza a (H7N9) virus-like particles: particulate characterizations and immunogenicity evaluation in murine and avian models. BMC Biotechnol 17, 2, doi:10.1186/s12896-016-0321-6 (2017).
54. Balish, A. L. et al. Influenza: propagation, quantification, and storage in Current Protocols in Microbiology (John Wiley & Sons, Inc., 2005).
55. Chen, H. W. et al. Inhibitory and combinatorial effect of diphyllin, a v-ATPase blocker, on influenza viruses. Antiviral Res 99, 371-382, doi:http://dx.doi.org/10.1016/j.antiviral.2013.06.014 (2013).
56. Ward, C. L. et al. Design and performance testing of quantitative real time PCR assays for influenza A and B viral load measurement. J Clin Virol 29, 179-188, doi:10.1016/s1386-6532(03)00122-7 (2004).
57. Gao, W. et al. Surface functionalization of gold nanoparticles with red blood cell membranes. Adv Mater 25, 3549-3553, doi:10.1002/adma.201300638 (2013).
58. Hu, C. M. et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci U S A 108, 10980-10985, doi:10.1073/pnas.1106634108 (2011).
59. Luk, B. T. et al. Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles. Nanoscale 6, 2730-2737, doi:10.1039/C3NR06371B (2014).
60. Bronshtein, T. et al. Cell derived liposomes expressing CCR5 as a new targeted drug-delivery system for HIV infected cells. J Control Release 151, 139-148, doi:10.1016/j.jconrel.2011.02.023 (2011).
61. Wilen, C. B. et al. HIV: cell binding and entry. CSH Perspect Med 2, doi:10.1101/cshperspect.a006866 (2012).
62. Hidari, K. I. & Suzuki, T. Dengue virus receptor. Trop Med Health 39, 37-43, doi:10.2149/tmh.2011-S03 (2011).
63. Papp, I. et al. Inhibition of influenza virus infection by multivalent sialic-acid-functionalized gold nanoparticles. Small 6, 2900-2906, doi:10.1002/smll.201001349 (2010).
64. Lee, C. et al. Colorimetric viral detection based on sialic acid stabilized gold nanoparticles. Biosens Bioelectron 42, 236-241, doi:10.1016/j.bios.2012.10.067 (2013).
65. Marin, M. J. et al. Glyconanoparticles for the plasmonic detection and discrimination between human and avian influenza virus. Org Biomol Chem 11, 7101-7107, doi:10.1039/c3ob41703d (2013).
66. Zheng, L. T. et al. Detection and differentiation of influenza viruses with glycan-functionalized gold nanoparticles. Biosens Bioelectron 91, 46-52, doi:10.1016/j.bios.2016.12.037 (2017).
67. Kroll, A. V. et al. Biointerfacing and applications of cell membrane-coated nanoparticles. Bioconjug Chem 28, 23-32, doi:10.1021/acs.bioconjchem.6b00569 (2017).
68. Papp, I. et al. Inhibition of influenza virus activity by multivalent glycoarchitectures with matched sizes. Chembiochem 12, 887-895, doi:10.1002/cbic.201000776 (2011).
69. de Oliveira, S. & Saldanha, C. An overview about erythrocyte membrane. Clin Hemorheol Microcirc 44, 63-74, doi:10.3233/ch-2010-1253 (2010).
70. Fang, R. H. et al. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Letters 14, 2181-2188, doi:10.1021/nl500618u (2014).
71. Chen, Z. et al. Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano 10, 10049-10057, doi:10.1021/acsnano.6b04695 (2016).
72. Kang, T. et al. Nanoparticles coated with neutrophil membranes can effectively treat cancer metastasis. ACS Nano 11, 1397-1411, doi:10.1021/acsnano.6b06477 (2017).
73. Parodi, A. et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol 8, 61-68, doi:10.1038/nnano.2012.212 (2013).
74. Hu, C. M. et al. 'Marker-of-self' functionalization of nanoscale particles through a top-down cellular membrane coating approach. Nanoscale 5, 2664-2668, doi:10.1039/c3nr00015j (2013).
75. Hu, C. J. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature, doi:10.1038/nature15373 (2015).
76. Walkey, C. D. et al. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano 8, 2439-2455, doi:10.1021/nn406018q (2014).
77. Tenzer, S. et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 8, 772-781, doi:10.1038/nnano.2013.181 (2013).
78. Nel, A. E. et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8, 543-557, doi:10.1038/nmat2442 (2009).
79. Chen, H. W. et al. Targeting and enrichment of viral pathogen by cell membrane cloaked magnetic nanoparticles for enhanced detection. ACS Appl Mater Inter 9, 39953-39961, doi:10.1021/acsami.7b09931 (2017).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71948-
dc.description.abstract與目標細胞之表面受體結合是病毒感染的首要過程,在這個過程中,病毒會藉由其表面蛋白特異性地鍵結細胞受體,進而入侵細胞。根據病毒與宿主細胞之間有選擇性的結合力,因此可以透過將細胞膜連同表面受體一同包覆在奈米顆粒表面來標的病毒。本研究選用流行性感冒病毒株 A/Puerto Rico/8/34 (H1N1) 作為模式病毒,將紅血球的細胞膜黏附在具有磁性的奈米顆粒表面 (簡稱RBC-mNP),進行流行性感冒病毒的標的與分離。首先,藉由奈米顆粒追蹤分析,得知作為核心的奈米顆粒與紅血球膜囊泡之間最佳的比例關係,再以蔗糖密度梯度離心方式將外覆紅血球膜之奈米顆粒純化,以提高病毒標的與分離的效率。以穿透式電子顯微鏡觀察,當奈米顆粒外覆具有高密度唾液酸分布的紅血球細胞膜,與流行性感冒病毒混合後會形成穩定結合狀態。接著將超順磁氧化鐵裝載於已建立好的紅血球膜奈米顆粒之中,以此具有磁力感受性之RBC-mNP用來處理含有流感病毒的尿囊液,發現RBC-mNP能有效標的病毒,經過磁力吸引聚集,可達到分離且濃縮流感病毒的效果;RBC-mNP濃縮分離過的尿囊液,不僅在qRT-PCR分析中有顯著較高的病毒基因量,在細胞培養中,流感病毒的感染力價亦有顯著提升,經過RBC-mNP的前處理並可增強病毒樣本在流感快篩試片上的陽性訊號,有助於病毒診斷的敏感度。本研究利用流感病毒與紅血球的血球凝集特性,製備外覆紅血球膜之磁性奈米顆粒,成功應用於流感病毒的標的與分離,提高偵測效率。未來此平台將可繼續應用於遞送治療流感病毒的藥物,或用於標的其他重要的病原,有助於傳染病的診斷與防治。zh_TW
dc.description.abstractAttachment to cellular surfaces is a major attribute among infectious pathogens for initiating disease pathogenesis. In viral infections, viruses exploit receptor-ligand interactions to latch onto cellular exterior prior to subsequent entry and invasion. In light of the selective binding affinity between viral pathogens and cells, nanoparticles cloaked in cellular membranes are herein employed for virus targeting. Using influenza virus A/Puerto Rico/8/34 (H1N1) as a model, erythrocyte membrane-cloaked nanoparticles are prepared and modified with magnetic functionalities (RBC-mNP) for virus targeting and isolation. To maximize targeting and isolation efficiency, density gradient centrifugation and nanoparticle tracking analysis were applied to minimize presence of uncoated particles and membrane vesicles. The resulting nanoparticles possess a distinctive membrane corona, a sialylated surface, and form colloidally stable clusters with influenza viruses. Magnetic functionality is bestowed to the nanoparticles through encapsulation of superparamagnetic iron-oxide particles, which enables influenza virus enrichment via magnetic extraction. Viral samples enriched by the RBC-mNPs are compatible with downstream analysis by qRT-PCR, immunochromatographic strip test, and cell-based titering assays. The demonstration of pathogen targeting and isolation by RBC-mNPs highlights a biologically inspired approach towards improved treatment and diagnosis against infectious disease threats. The work also sheds light on the efficient membrane cloaking mechanism that bestows nanoparticles with cell mimicking functionalities.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:16:09Z (GMT). No. of bitstreams: 1
ntu-107-R04629016-1.pdf: 3793013 bytes, checksum: debb5942527bb014135822a6406c4c7a (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
第一章 前言 1
1.1 流行性感冒之疫情 1
1.2 流行性感冒病毒構造與感染機制 2
1.2.1 A、B、C和D型流感病毒 2
1.2.2 感染機制 3
1.3 病毒感染不同物種之組織分布 4
1.4 臨床病毒診斷技術的應用和限制 5
1.5 奈米生物技術的應用與發展 6
1.5.1 奈米載體種類 6
1.5.2 PLGA奈米顆粒的特性及應用 7
1.5.3 SPIO奈米顆粒的特性及應用 8
1.6 奈米科技在流感診斷及治療上的研究發展 8
1.6.1 診斷 8
1.6.2 治療 9
1.7 研究動機 9
第二章 材料方法 11
2.1 Buffer的配置 11
2.1.1 100 mL 1 mM EDTA‧2Na水溶液配置 11
2.1.2 10-6 nM EDTA‧2Na水溶液配置 11
2.1.3 500 mL 10 mM Tris-HCl (pH8.0) 水溶液配置 11
2.1.4 100 mL 5 mM EDTA‧2Na/PBS溶液配置 11
2.1.5 50 mL Protease inhibitor/5 mM EDTA‧2Na/PBS溶液配置 11
2.1.6 100 mL 10 mM TEN緩衝溶液配置 11
2.2 病毒材料製備 12
2.2.1 流感病毒之增殖、純化與定量 12
2.2.2 蛋白質定量 (Bradford protein assay) 13
2.2.3 H7N9類病毒顆粒製備 13
2.3 流感病毒之力價測定與分析 13
2.3.1 血球凝集試驗 13
2.3.2 流感病毒RNA萃取 14
2.3.3 流感病毒之one-step RT-PCR 14
2.3.4 流感病毒之RT-qPCR 15
2.3.5 TCID50試驗 16
2.3.6 病毒斑試驗 17
2.4 製備紅血球膜 18
2.4.1 小鼠採血 18
2.4.2 紅血球純化 18
2.5 奈米顆粒之製備 19
2.5.1 PLGA nanoparticles (NP) 19
2.5.2 RBC-PLGA nanoparticles (RBC-NP) 19
2.5.3 PEG-PLGA NP (PEG-NP) 20
2.5.4 SPIO-loaded PLGA NP (mNP) 20
2.5.5 RBC-SPIO@PLGA nanoparticles (RBC-mNP) 20
2.5.6 奈米顆粒保存方法與其他 21
2.6 奈米顆粒之分析方法 21
2.6.1 NanoSight與DLS分析奈米顆粒粒徑 21
2.6.2 電子顯微鏡(TEM)分析 22
2.7 RBC-NP之試驗分析 24
2.7.1 RBC-NP之大小和表面電位監測 24
2.7.2 RBC-NP數目在紅血球膜結合前後的分析 24
2.8 PR8病毒與奈米顆粒之結合試驗 25
2.8.1 PR8病毒與RBC-NP結合試驗 25
2.8.2 PR8病毒與PEG-NP結合試驗 26
2.9 mNP以磁鐵分離之效果 26
2.9.1 磁力吸附mNP能力的實驗方法 26
2.9.2 磁力集中mNP的實驗方法 26
2.10 RBC-mNP與PR8病毒之結合試驗 27
2.11 生物性樣品分離與檢測 28
2.11.1 老鼠血漿中測試RBC-mNP分離不同PR8病毒濃度的效果 28
2.11.2 流感快篩測試 28
第三章 結果 29
3.1 老鼠血球膜包覆PLGA奈米顆粒之分析 29
3.1.1 細胞膜包覆PLGA NP產生大小和表面電位變化 29
3.1.2 奈米顆粒數目在細胞膜結合前後的變化 29
3.1.3 紅血球細胞膜包覆奈米顆粒的電子顯微鏡影像 30
3.2 RBC-mNP與PR8病毒結合 31
3.2.1 PR8病毒尿囊液之增殖、定量與PCR結果 31
3.2.2 奈米顆粒與病毒結合後在電子顯微鏡結果拍攝 32
3.2.3 奈米顆粒與病毒結合前後整體族群大小變化 33
3.2.4 奈米顆粒與病毒結合顆粒的大小變化 34
3.3 SPIO nanoparticles磁鐵分離效果 35
3.3.1 磁力吸附能力判斷 35
3.3.2 磁力集中SPIO NP的效率 36
3.4 老鼠紅血球膜包覆具有磁性SPIO的PLGA nanoparticles分析 36
3.4.1 mNP在包覆細胞膜前後的大小和表面電位變化 36
3.4.2 電子顯微鏡拍攝結果 37
3.5 RBC-mNP與PR8病毒結合 38
3.5.1 電子顯微鏡拍攝結果 38
3.5.2 不同RBC-mNP數量與病毒結合回收能力 38
3.6 生物性樣品測試 40
3.6.1 血漿樣品中測試RBC-mNP分離不同PR8病毒濃度的效果 40
3.6.2 qPCR檢測 40
3.6.3 TCID50試驗 41
3.6.4 病毒斑測試 42
3.6.5 流感快篩測試 42
第四章 討論 44
參考文獻 72
dc.language.isozh-TW
dc.subject外覆紅血球膜之奈米顆粒zh_TW
dc.subject流行性感冒病毒zh_TW
dc.subject超順磁氧化鐵顆粒zh_TW
dc.subject宿主與病原之交互作用zh_TW
dc.subjectred blood cell membrane cloaked nanoparticlesen
dc.subjecthost-pathogen interactionen
dc.subjectsuperparamagnetic iron-oxide nanoparticlesen
dc.subjectinfluenza virusen
dc.title以外覆紅血球膜之磁性奈米顆粒標的與分離流行性感冒病毒zh_TW
dc.titleRed Blood Cell Membrane Cloaked Magnetic Nanoparticles for Targeting and Isolation of Influenza Virusen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor胡哲銘(Che-Ming Jack Hu)
dc.contributor.oralexamcommittee劉銘燦(Ming-Tsan Liu),楊宏志(Hung-Chih Yang),張世宗(Shih-Chung Chang)
dc.subject.keyword外覆紅血球膜之奈米顆粒,流行性感冒病毒,超順磁氧化鐵顆粒,宿主與病原之交互作用,zh_TW
dc.subject.keywordred blood cell membrane cloaked nanoparticles,influenza virus,superparamagnetic iron-oxide nanoparticles,host-pathogen interaction,en
dc.relation.page79
dc.identifier.doi10.6342/NTU201800693
dc.rights.note有償授權
dc.date.accepted2018-03-26
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved