Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71946
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭彥甫(Yan-Fu Kuo)
dc.contributor.authorHao-Wen Yangen
dc.contributor.author楊皓文zh_TW
dc.date.accessioned2021-06-17T06:16:04Z-
dc.date.available2023-08-19
dc.date.copyright2018-08-19
dc.date.issued2018
dc.date.submitted2018-07-20
dc.identifier.citationAndianto, W. I., Waluyo, T. K., Dungani, R., Hadiyane, A., & Hernandi, M. (2015). Wood anatomical from Indonesian genus Cinnamomum (Lauraceae) and their identification key. Asian J Plant Sci, 14, 11-19.
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79.
Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate energy minimization via graph cuts. IEEE Transactions on pattern analysis and machine intelligence, 23(11), 1222-1239.
Casanova, D., de Mesquita Sá Junior, J. J., & Bruno, O. M. (2009). Plant leaf identification using Gabor wavelets. International Journal of Imaging Systems and Technology, 19(3), 236-243.
Chang, C. C., & Lin, C. J. (2011). LIBSVM: a library for support vector machines. ACM transactions on intelligent systems and technology (TIST), 2(3), 27.
Chen, P., Sun, J., & Ford, P. (2014). Differentiation of the four major species of cinnamons (C. burmannii, C. verum, C. cassia, and C. loureiroi) using a flow injection mass spectrometric (FIMS) fingerprinting method. Journal of agricultural and food chemistry, 62(12), 2516-2521.
Chollet, F. (2015). Keras.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
De Boer, P. T., Kroese, D. P., Mannor, S., & Rubinstein, R. Y. (2005). A tutorial on the cross-entropy method. Annals of operations research, 134(1), 19-67.
Fogel, I., & Sagi, D. (1989). Gabor filters as texture discriminator. Biological cybernetics, 61(2), 103-113.
Ghazi, M. M., Yanikoglu, B., & Aptoula, E. (2017). Plant identification using deep neural networks via optimization of transfer learning parameters. Neurocomputing, 235, 228-235.
Hahnloser, R. H., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J., & Seung, H. S. (2000). Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature, 405(6789), 947.
Haralick, R. M., & Shapiro, L. G. (1992). Computer and robot vision. Addison-wesley.
Ho, K. Y., Lee, S. C., Shiue, S. W., & Hwang, C. C. (2015). A comparison of nrDNA internal transcribed spacer (ITS) loci for phylogenetic inference and authentication among Cinnamomum osmophloeum and related species in Taiwan. African Journal of Biotechnology, 14(13), 1088-1096.
Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A practical guide to support vector classification.
Hwang, S. W., Kobayashi, K., Zhai, S., & Sugiyama, J. (2017). Automated identification of Lauraceae by scale-invariant feature transform. Journal of Wood Science, 1-9.
Jeon, W. S., & Rhee, S. Y. (2017). Plant leaf recognition using a convolution neural network. International Journal of Fuzzy Logic and Intelligent Systems, 17(1), 26-34.
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Knerr, S., Personnaz, L., & Dreyfus, G. (1990). Single-layer learning revisited: a stepwise procedure for building and training a neural network. In Neurocomputing (pp. 41-50). Springer, Berlin, Heidelberg.
Kojoma, M., Kurihara, K., Yamada, K., Sekita, S., Satake, M., & Iida, O. (2002). Genetic identification of cinnamon (Cinnamomum spp.) based on the trnL-trnF chloroplast DNA. Planta Medica, 68(01), 94-96.
Kotikalapudi, R. (2017). contributors (2017). keras-vis.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).
Lee, S. H., Chan, C. S., Wilkin, P., & Remagnino, P. (2015). Deep-plant: Plant identification with convolutional neural networks. In Image Processing (ICIP), 2015 IEEE International Conference on (pp. 452-456). IEEE.
Lin, M., Chen, Q., & Yan, S. (2013). Network in network. arXiv preprint arXiv:1312.4400.
Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics, 9(1), 62-66.
Priya, C. A., Balasaravanan, T., & Thanamani, A. S. (2012). An efficient leaf recognition algorithm for plant classification using support vector machine. In Pattern Recognition, Informatics and Medical Engineering (PRIME), 2012 International Conference on (pp. 428-432). IEEE.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. nature, 323(6088), 533.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Berg, A. C. (2015). Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211-252.
Selvaraju, R. R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., & Batra, D. (2016). Grad-CAM: Why did you say that?. arXiv preprint arXiv:1611.07450.
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
Simonyan, K., Vedaldi, A., & Zisserman, A. (2013). Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. Cvpr.
Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2017). Learning transferable architectures for scalable image recognition. arXiv preprint arXiv:1707.07012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71946-
dc.description.abstract樹苗摻假是林業生產上一個現存的問題。土肉桂為常綠植物,由於具有豐富的肉桂醛,因此有較高的經濟價值。和土肉桂具有相似葉部形態的另外兩種樹種:陰香和台灣肉桂,則不富含肉桂醛這種化學成分。在台灣,已有相當多報導指出有關陰香摻假土肉桂的事件。然而,由於它們外觀形態的高度相似性,因此分辨這三種樹種相當不容易。而樹種之間的價值差異,也常造成林業農民的經濟損失。本研究提出利用葉子影像和深度學習來辨識三種樟屬樹種。利用平板掃描器獲取兩個不同地區的葉子影像,然後使用一個地區採集的葉子影像作為訓練樣本,開發了基於VGG16,Inception-V3和NASNet模型的深度卷積神經網絡分類器。結果顯示,這些深度卷積神經網絡分類器應用在另一個地區的葉子影像上,測試準確率達到至少0.87。此外,本研究開發的卷積神經網絡分類器也優於支持向量機分類器。zh_TW
dc.description.abstractTree and seedling adulteration has becoming an issue in plant cultivation. Cinnamomum osmophloeum (Lauraceae) is an evergreen plant that yields cinnamaldehyde compound and has high economic value. Although morphologically resembling C. osmophloeum, two other species, C. burmannii and C. insulari-montanum, do not produce cinnamaldehyde. Adulteration of C. burmannii using C. osmophloeum has been reported in Taiwan. Yet, even for experts, it is challenging to discriminate the three species from their appearance due to their high degree of similarity. This brings economic loss to forest farmers owing to the value discrepancy between the species. This study proposed to identify the three Cinnamomum species using leaf images and deep learning approaches. In the study, leaf images of the three species were acquired from two camps using flatbed scanners. Deep convolutional neural network (CNN) classifiers based on VGG16, Inception-V3, and NASNet models were then developed using the leaf images collected from one garden as the training samples. The result showed that the developed deep CNN classifiers reached a test accuracy of at least 0.87 on the images collected from the other garden. The developed CNN classifiers also outperformed support vector machine classifiers.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:16:04Z (GMT). No. of bitstreams: 1
ntu-107-R05631027-1.pdf: 1745238 bytes, checksum: 3ae14c6cba9de3342b6890dc70adf875 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsACKNOWLEDGEMENTS i
摘要 ii
ABSTRACT iii
TABLE OF CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES viii
CHAPTER 1. INTRODUCTION 1
1.1 Background 1
1.2 Objectives 2
1.3 Organization 2
CHAPTER 2. LITERATURE REVIEW 3
2.1 Biological methods for identifying Cinnamomum species 3
2.2 Image-based approaches to identify plants 3
2.3 Plant identification using deep learning 4
CHAPTER 3. MATERIALS AND METHODS 5
3.1 Leaf sample collection and image acquisition 5
3.2 Leaf segmentation 5
3.3 Patch extraction 6
3.4 Augmentation of image samples 7
3.5 Species identification using deep CNN models with pre-trained weights 8
3.5.1 VGG16 8
3.5.2 Inception-V3 10
3.5.3 NASNet 11
3.6 Training of the CNN classifiers 12
3.7 Saliency maps and Grad-CAMs 13
3.8 Species identification using Gabor wavelets and support vector machines 13
CHAPTER 4. RESULTS AND DISCUSSION 16
4.1 Accuracies and losses of the CNN models 16
4.2 Classification performance of the developed CNN models 17
4.3 Saliency maps and Grad-CAMs of the developed CNN models 18
4.4 Variation in Gabor magnitude responses between species 20
4.5 SVM accuracy for comparison 21
CHAPTER 5. CONCLUSION 22
REFERENCES 23
dc.language.isoen
dc.subject樟科(樟屬)zh_TW
dc.subject樹苗摻假zh_TW
dc.subject物種辨識zh_TW
dc.subject深度學習zh_TW
dc.subject卷積神經網路zh_TW
dc.subject模型可視化zh_TW
dc.subjectspecies identificationen
dc.subjectCinnamomum (Lauraceae)en
dc.subjectseedling adulterationen
dc.subjectmodel visualizationen
dc.subjectdeep learningen
dc.subjectconvolutional neural networksen
dc.title利用深度卷積類神經網路辨識形態相似的樟屬(樟科)物種zh_TW
dc.titleDiscriminating morphologically similar species in genus Cinnamomum (Lauraceae) using deep convolutional neural networksen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡明哲(Ming-Jer Tsai),花凱龍(Kai-Lung Hua),鄭文皇(Wen-Huang Cheng)
dc.subject.keyword樟科(樟屬),樹苗摻假,物種辨識,深度學習,卷積神經網路,模型可視化,zh_TW
dc.subject.keywordCinnamomum (Lauraceae),seedling adulteration,species identification,deep learning,convolutional neural networks,model visualization,en
dc.relation.page26
dc.identifier.doi10.6342/NTU201801661
dc.rights.note有償授權
dc.date.accepted2018-07-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
1.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved