請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71939完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉開溫(Kai-Wun Yeh) | |
| dc.contributor.author | Hsu-Tung Tsai | en |
| dc.contributor.author | 蔡旭東 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:15:47Z | - |
| dc.date.available | 2024-07-10 | |
| dc.date.copyright | 2019-07-10 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-13 | |
| dc.identifier.citation | 林于倫。2008。電照週期對文心蘭'Gower Ramsey'花序發育及品質之影響。國立中興大學園藝學系所學位論文。台中。
張允瓊、李哖。1998。光度對文心蘭。宜蘭技術學報,39-51。 黃怡菁。1997。文心蘭基本生長週期與花期修剪產期調節。高雄區農業專訊。22: 16-17 黃柏睿。2011。文心蘭ascorbate peroxidase對阿拉伯芥在高溫中生長下對於開花機制的調控功能。國立臺灣大學植物科學研究所學位論文。台北。 臧友真。2013。文心蘭miR156-SPL(SQUAMOSA PROMOTER BINDING PROTEIN-LIKE)調控模組於高溫誘導開花機制之功能性探討。國立臺灣大學植物科學研究所學位論文。台北。 杜建勳。 2015。文心蘭SPLs (SQUAMOSAPROMOTER BINDING PROTEIN-LIKE 參與高室溫誘導開花之調控機制。國立台灣大學植物科學研究所學位論文。台北。 林智良、朱德民。1989。光對作物光和產物分配的影響。科學農業。37(5-6): 140-147。 許榮華。2010。假球莖於著生蘭生育上扮演的角色。台中區農業改良場特刊。105: 154-162。 Amasino, R. M. and Michaels, S. D. (2010) The timing of flowering. Plant Physiol. 154: 516-520. Amasino, R. (2010) Seasonal and developmental timing of flowering. Plant J. 61: 1001–1013. Alexandre, C. M. and Hennig, L. (2008) FLC or not FLC: the other side of vernalization. J. Exp. Bot. 59: 1127-1135. Almeida, A. M., Villalobos, E., Araújo, S. S., Leyman, B., Van Dijck, P., Alfa-ro-Cardoso, L., Fevereiro, P. S., Torné, J.M. and Santos, D. M. (2005) Transformation of tobacco with an Arabidopsis thaliana gene involved in trehalose biosynthesis increases tolerance to several abiotic stresses. Euphytica. 146(1–2): 165-176. Attolico, A. and De Tullio, M. (2006) Increased ascorbate content delays flowering in long-day grown Arabidopsis thaliana (L.) Heynh. Plant Physiol. Biochem. 44: 462-466. Blazquez, M. A., Green, R., Nilsson, O., Sussman, M.R. and Weigel, D. (1998) Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell. 10: 791–800. Barth, C., Moeder, W., Klessig, D. F. and Conklin, P. L. (2004) The timing of senescence and response to pathogens is altered in the ascorbate- deficient Arabidopsis mutant vitamin c-1. Plant Physiol. 134: 1784– 1792. Barth, C., De Tullio, M. and Conklin, P. L. (2006) The role of ascorbic acid in the control of flowering time and the onset of senescence. J. Exp. Bot. 57: 1657–1665. Balasubramanian, S., Sureshkumar, S., Lempe, J. and Weigel, D. (2006) Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet. 2: e106. Baena-González, E., Rolland, F., Thevelein, J. M. and Sheen, J. (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448: 938–942. Baena-González, E. and Sheen, J. (2008) Convergent energy and stress signaling. Trends Plant Sci. 13: 474–482. Cabib, E. and Leloir, L. F. (1958) The biosynthesis of trehalose phosphate. J. Biol. Chem. 231: 259-275. Conklin, P. and Barth, C. (2004) Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environ. 27: 959-970. Cortina, C. and Culiáñez-Macià, F. A. (2005) Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Sci. 169(1): 75–82. Chin, D. C., Shen, C. H., SenthilKumar, R. and Yeh, K. W. (2014) Prolonged exposure to elevated temperature induces floral transition via up-regulation of Cytosolic Ascorbate Peroxidase 1 and subsequent reduction of the ascorbate redox ratio in Oncidium Hybrid Orchid. Plant and Cell Physiology. 55: 2164-2176. Chin, D. C., Hsieh, C. C., Lin, H. Y. and Yeh, K. W. (2016) A Low Glutathione Redox State Couples with a Decreased Ascorbate Redox Ratio to Accelerate Flowering in Oncidium Orchid. Plant Cell Physiol. 57: 423-436. Corbesier, L., Lejeune, P. and Bernier, G. (1998) The role of carbohydrates in the induction of flowering in Arabidopsis thaliana: comparison between the wild type and a starchless mutant. Planta. 206: 131− 137. Corbesier, L. and Coupland, G. (2006) The quest for florigen: a review of recent progress. J. Exp. Bot. 57: 3395-3403. Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C. and Coupland, G. (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science. 316: 1030–1033. Chang, S., Puryear, J. and Cairney, J. (1993) A simple and efficient method for isolating RNA from pine trees. Plant molecular biology reporter 11:113-116. Dietz, K. J. (2014) Redox regulation of transcription factors in plant stress acclimation and development. Antioxid. Redox Signal. 21: 1356–1372. Du, L., Qi, S., Ma, J., Xing, L., Fan, S., Zhang, S., Li, Y., Shen, Y., Zhang, D. and Han, M. (2017) Identification of TPS family members in apple (Malus x domestica Borkh.) and the effect of sucrose sprays on TPS expression and floral induction. Plant Physiology and Biochemistry. 120: 10-23. Drennan, P. M., Smith, M. T., Goldsworthy, D. and Van Staden, J. (1993) The Occurrence of Trehalose in the Leaves of the Desiccation-Tolerant Angiosperm Myrothamnus f/abellifolius Welw. Plant Physiol.142: 493-496. Debast, S., Nunes-Nesi, A., Hajirezaei, M. R., Hofmann, J., Sonnewald, U., Fernie, A. R. and Börnke, F. (2011) Altering trehalose-6-phosphate content in transgenic potato tubers affects tuber growth and alters responsiveness to hormones during sprouting. Plant Physiol 156: 1754–1771. Eveland, A. L. and Jackson, D. P. (2012) Sugars, signaling, and plant development. J Exp Bot. 63: 3367−3377. Elbein, A. D., Pan, Y. T., Pastuszak, I. and Carroll, D. (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13: 17R-27R. Foyer, C.H. and Halliwell, B. (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta. 133: 21-25. Friend, D. J. C., Bodson, M. and Bernier, G. (1984) Promotion of flowering in Brassica campestris L. cv Ceres by sucrose. Plant Physiol. 75: 1085−1089. Figueroa, C. M. and Lunn, J. E. (2016) A tale of two sugars: trehalose 6- phosphate and sucrose. Plant Physiol 172: 7−27. Fornara, F., de Montaigu, A. and Coupland, G. (2010) SnapShot: control of flowering in Arabidopsis. Cell. 141: 550. Gil, V. and Zaidan, L. (1996) Flowering of Oncidium flexuosum. Orchid Review. 104: 186-188. Gómez, L. D., Gilday, A., Feil, R., Lunn, J. E. and Graham, I. A. (2010) AtTPS1- mediated trehalose 6-phosphate synthesis is essential for embryogenic and vegetative growth and responsiveness to ABA in germinating seeds and stomatal guard cells. Plant J 64: 1–13. Goddijn, O. J. M. and van Dun, K. (1999) Trehalose metabolism in plants. Trends Plant Sci. 4: 315–319. Ghillebert, R., Swinnen, E., Wen, J., Vandesteene, L., Ramon, M., Norga, K., Rolland, F. and Winderickx, J. (2011) The AMPK/SNF1/SnRK1 fuel gauge and energy regulator: structure, function and regulation. FEBS J. 278: 3978–3990. Griffiths, C. A., Sagar, R., Geng, Y., Primavesi, L. F., Patel, M. K., Passarelli, M. K., Gilmore, I. S., Steven, R. T., Bunch, J., Paul, M. J. and Davis B. G. (2016) Chemical in- tervention in plant sugar signalling increases yield and resilience. Nature. 540: 574–578. Huijser, P. and Schmid, M. (2011) The control of developmental phase transitions in plants. Development. 138: 4117-4129. Halford, N. G. and Hey, S. J. (2009) Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signalling in plants. Biochem. J. 419: 247–259. Hedbacker, K. and Carlson, M. (2008) SNF1/AMPK pathways in yeast. Front. Biosci. 13: 2408–2420. Hardie, D. G. (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. 8: 774–785. Johansson, M. and Staiger, D. (2014) Time to flower: interplay between photoperiod and the circadian clock. Journal of Experimental Botany. 66: 719-730. Kaiser, R. (1993) Orchids of the American tropics. Roche Basel ED. The Scent of Orchid. Composed and printed by Morf and Co. AG, Basel. 115-116. Karasawa, K. (1989) Oncidium and Odontoglossums. Orchid Altas. 7. Kim, J. J., Lee, J. H., Kim, W., Jung, H. S., Huijser, P. and Ahn, J. H. (2012) The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Plant Physiol. 159: 461-478. Kotchoni, S. O., Larrimore, K. E., Mukherjee, M., Kempinski, C. F. and Barth, C. (2009) Alterations in the endogenous ascorbic acid content affect flowering time in Arabidopsis. Plant Physiol. 149: 803-815. Lee, J. H., Lee, J. S. and Ahn, J. H. (2008) Ambient temperature signaling in plants: an emerging field in the regulation of flowering time. Journal of Plant Biology. 51: 321-326. Lee, H., Yoo, S. J., Lee, J. H., Kim, W., Yoo, S. K., Fitzgerald, H., Carrington, J. C. and Ahn, J. H. (2010) Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis. Nucleic Acids Res. gkp1240. Lunn, J. E. (2007) Gene families and evolution of trehalose metabolism in plants. Funct. Plant Biol. 34: 550-563. Li, H. W., Zang, B. S., Deng, X. W. and Wang, X. P. (2011) Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta. 234: 1007–1018. Lunn, J. E., Feil, R., Hendriks, J. H. M., Gibon, Y., Morcuende, R., Osuna, D., Scheible, W. R., Carillo, P., Hajirezawl, M. R. and Stitt, M. (2006) Sugar induced increases in trehalose 6-phosphate are correlated with redox activation of ADP-glucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochem J 397: 139−148. Lastdrager, J., Hanson, J. and Smeekens., S. (2014) Sugar signals and the control of plant growth and development. J Exp Bot. 65: 799−807. Lee, J. H., Ryu, H. S., Chung, K. S., Posé, D., Kim, S., Schmid, M. and Ahn, J. H. (2013). Regulation of temperature-responsive flowering by MADS-box transcription factor repressors. Science. 342: 628-632. Long, S. P and Woodward, F. I. (1988). Plants and temperature. The Company of Biologists, Cambridge. 299-300. Liu, M. S., Chien, C. T. and Lin, T. P. (2008). Constitutive Components and Induced Gene Expression are Involved in the Desiccation Tolerance of Selaginella tamariscina. Plant Cell Physiol. 49(4): 653–663. Luis, J., Salas, R., Medrano, R. R., Montes-Horcasitas, M. C., Agreda-Laguna, K. A., Hinojosa-Moya, J. and Xoconostle-Cázares., B. (2016) Vascular expression of trehalose phosphate synthase1 (TPS1) induces flowering in Arabidopsis. Plant Omics Journal. 9(5): 344-351. Michaels, S. D. and Amasino, R. M. (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell. 11: 949–956. Martinez-Barajas, E., Delatte, T., Schluepmann, H., de Jong, G. J., Somsen, G. W., Nunes, C., Primavesi, L. F., Coello, P., Mitchell, R. A. C, and Paul, M. J. (2011) Wheat grain development is characterised by remarkable T6P accumulation pre-grain filling: tissue distribution and relationship to SNF1-related protein kinase1 activity. Plant Physiol 156: 373–381. Miranda, J. A., Avonce, N., Suárez, R., Thevelein, J. M., Van Dijck, P. and Iturriaga, G. (2007) A bifunctional TPS–TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis. Planta. 226: 1411–1421. Noctor, G. and Foyer, C. H. (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Biol. 49: 249-279. Noctor, G. (2006) Metabolic signalling in defence and stress: the central roles of soluble redox couples. Plant Cell Environ. 29: 409–425. Noctor, G., Mhamdi, A., Chaouch, S., Han, Y., Neukermans, J., Marquez- Garcia, B., Queval, G. and Foyer, C. H. (2012) Glutathione in plants: an integrated overview. Plant Cell Environ. 35: 454–484. Nuccio, M. L., Wu, J., Mowers, R., Zhou, H. P., Meghji, M., Primavesi, L. F., Paul, M. J., Chen, X., Gao, Y., Haque, E., Basu, S. S. and Lagrimini, L. M. (2015) Expression of trehalose-6- phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nat Biotechnol. 33: 862–869. Nunes, C., Primavesi, L. F., Patel, M. K., Martinez-Barajas, E., Powers, S. J., Sagar, R., Fevereiro, P. S., Davis, B. G. and Paul, M. J. (2013) Inhibition of SnRK1 by metabolites: tissue-dependent effects and cooperative inhibition by glucose 1-phosphate in combination with trehalose 6-phosphate. Plant Physiol. Biochem. 63: 89–98. Olszewski, N., Sun, T. and Gubler, F. (2002) Gibberellin signaling: Biosynthesis, catabolism and response pathways. Plant Cell. 14 (suppl.): S61–S80. Ogawa, K. (2005) Glutathione-associated regulation of plant growth and stress responses. Antioxid. Redox Signal. 7: 973–981. Ogawa, K., Tasaka, Y., Mino, M., Tanaka, Y. and Iwabuchi, M. (2001) Association of glutathione with flowering in Arabidopsis taliana. Plant Cell Physiol. 42: 524–530. Ohto, M., Onai, K., Furukawa, Y., Aoki, E., Araki, T. and Nakamura, K. (2001) Effects of sugar on vegetative development and floral transition in Arabidopsis. Plant Physiol. 127: 252–261. O’Hara, L. E., Paul, M. J. and Wingler, A. (2013) How do sugars regulate plant growth and development? New insight into the role of trehalose-6-phosphate. Mol. Plant. 6: 261–274. Oszvald, M., Primavesi, L. F., Griffiths, C. A., Cohn, J., Basu, S. S., Nucio, M. L. and Paul, M. J. (2018) Trehalose 6-phosphate in maize reproductive tissue regulates assimilate partitioning and photosynthesis. Plant Physiol. 177: XXX-XXX Pignocchi, C. and Foyer, C. H. (2003) Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. Curr. Opin. Plant Biol. 6: 379–389. Posé, D., Verhage, L., Ott, F., Yant, L., Mathieu, J., Angenent, G. C., Immink, R. G. and Schmid, M. (2013) Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature. 503: 414-417. Rolland, F., Baena-Gonzalez, E. and Sheen, J. (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol. 57: 675-709. Roldán, M., Gómez-Mena, C., Ruiz-García, L., Salinas, J. and Martínez-Zapater, J.M. (1999) Sucrose availability on the aerial part of the plant promotes morphogenesis and flowering of Arabidopsis in the dark. Plant J. 20: 581-590. Ramon, M., De Smet, I., Vandesteene, L., Naudts, M., Leyman, B., Van Dijck, P., Rolland, F., Beeckman, T. and Thevelein, J. M. (2009) Extensive expression regulation and lack of heterologous enzymatic activity of the Class II trehalose metabolism proteins from Arabidopsis thaliana. Plant Cell Environ. 32: 1015-1032. Paul, M. J., Gonzalez-Uriarte, A., Griffiths, C. A. and Hassani-Pak, K. (2018) The Role of Trehalose 6-Phosphate in Crop Yield and Resilience. Plant Physiol. 177: 2–23. Sheldon, C. C., Burn, J. E., Perez, P. P., Metzger, J., Edwards, J. A., Peacock, W. J. and Dennis, E. S. (1999) The FLF MADS box gene: A repressor of flowering in Arabidopsis regulated by vernal- ization and methylation. Plant Cell. 11: 445–458. Suárez-López, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F. and Coupland, G. (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature. 410: 1116-1120. Shim, J.S. and Imaizumi, T. (2015) Circadian clock and photoperiodic response in Arabidopsis: from seasonal flowering to redox homeostasis. Biochemistry. 54: 157-170. Schluepmann, H., Pellny, T., van Dijken, A., Smeekens, S., and Paul, M. (2003) Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana. Proc Natl Acad Sci USA. 100: 6849-6854. Sheen, J. (2014) Master regulators in plant glucose signaling networks. J Plant Biol. 57:67−79. Sun, J., Wang, H., Ren, L., Chen, S., Chen, F. and Jiang, J. (2017) CmFTL2 is involved in the photoperiod- and sucrose-mediated control of flowering time in chrysanthemum. Hort Res. 4: 17001. Shikata, M., Koyama, T., Mitsuda, N. and Ohme-Takagi, M. (2009) Arabidopsis SBP-box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase. Plant Cell Physiol. 50: 2133-2145. Smith, J. J., Ververidis, P. and John, P. (1992) Characterization of the ethylene- forming enzyme partially purified from melon. Phytochemistry 31: 1485-1494. Tiwari, S. B., Shen, Y., Chang, H. C., Hou, Y., Harris, A., Ma, S. F., McPartland, M., Hymus, G. J., Adam, L. and Marion, C. (2010) The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis‐element. New Phytologist. 187: 57-66. Tognetti, J. A., Pontis, H. G. and Martinez-Noel, G. M. A. (2013) Sucrose signaling in plants. Plant Signal Behav. 8: 3, e23316. Turck, F., Fornara, F. and Coupland, G. (2008) Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu. Rev. Plant Biol. 59: 573–594. Van Dijken, A. J. H., Schluepmann, H. and Smeekens, S. C. M. (2004) Arabidopsis trehalose-6-phosphate synthase 1 is essential for normal vegetative growth and transition to flowering. Plant Physiol. 135: 969–977. Van Laere, A. (1989) Trehalose, reserve and/or stress metabolite? FEMS Microbiol Rev. 63(3): 201–210. Vandesteene, L., Ramon, M., Le, Roy K., Van Dijck, P. and Rolland, F. (2010) A single active trehalose-6-p synthase (TPS) and a family of putative regulatory TPS-like proteins in Arabidopsis. Mol Plant. 3(2): 406–419. Wang, C. Y., Chiou, C. Y., Wang, H. L., Krishnamurthy, R., Venkatagiri, S., Tan, J. and Yeh, K. W. (2008) Carbohydrate mobilization and gene regulatory profile in the pseudobulb of Oncidium orchid during the flowering process. Planta. 227: 1063-1077. Wiemken, A. (1990) Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie Van Leeuwenhoek. 58(3): 209–217. Wilson, R. N., Heckman, J. W. and Somerville, C. R. (1992) Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol. 100: 403–408. Wahl, V., Ponnu, J., Schlereth, A., Arrivault, S., Langenecker, T., Franke, A., Feil, R., Lunn, J. E., Stitt, M. and Schmid, M. (2013) Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science. 339: 704– 707. Wang, Y, Bao, Z, Zhu, Y. and Hua, J. (2009) Analysis of temperature modulation of plant defense against biotrophic microbes. Mol Plant–Microbe Interact. 22: 498-506. Wang, J. W., Czech, B. and Weigel, D. (2009) miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell. 138: 738–749. Xie, K., Wu, C. and Xiong, L. (2006) Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiol. 142: 280-293. Yong, J. and Hew, C. (1995) The importance of photoassimilate contribution from the current shoot and connected back shoots to inflorescence size in the thin-leaved sympodial orchid Oncidium Goldiana. International Journal of Plant Sciences. 22: 450-459. Yanagida, M., Mino, M., Iwabuchi, M. and Ogawa, K. (2004) Reduced glutathione is a novel regulator of vernalization-induced bolting in the rosette plant Eustoma grandiflorum. Plant Cell Physiol. 45: 129–137. Zang, B. S., Li, H. W., Li, W. J., Deng, X. W. and Wang, X. P. (2011) Analysis of trehalose-6-phosphate synthase (TPS) gene family suggests the formation of TPS complexes in rice. Plant Mol Biol. doi:10.1007/ s11103-011-9781-1. Zhang, Y., Primavesi, L. F., Jhurreea. D., Andralojc, P. J, Mitchell, R. A., Powers, S. J, Schluepmann, H., Delatte, T., Wingler, A. and Paul, M. J. (2009) Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant Physiol. 149: 1860–1871. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71939 | - |
| dc.description.abstract | 文心蘭(Oncidesa)為台灣外銷切花出口最大宗之花卉作物,但其開花與從營養 生長轉為生殖生長之機制尚未明瞭。前人研究發現,當文心蘭長時間處於中高環境 溫度(30°C)之下將會被誘導開花,因植物體內會大量累積活性氧化物質(reactive oxygen species; ROS),並活化了維生素C-榖胱甘肽循環(AsA-GSH cycle),誘導文 心蘭SQUAMOSA PROMOTER BINDING PROTEIN-LIKEs(OgSPLs)表現,進而誘導 下游開花基因Flowering locus T(FT)、LEAFY(LFY)與APETALA 1 (AP1)表現,最終使文心蘭開花。近期研究指出,海藻糖-6-磷酸鹽生成酶(trehalose-6-phosphate synthase;TPS)會生合成海藻糖-6-磷酸鹽(T6P),而T6P會作為一種信號分子,去協助植物抵 抗逆境、對養分脅迫進行反應與影響開花時間,並且T6P的含量與蔗糖含量呈現正 相關性。為了探究OgTPS1與前人發現之文心蘭中高環境溫度誘導開花路徑之關係, 並且探討OgTPS1與蔗糖之關係,我們將文心蘭處理了中高環境溫度、buthionine sulfoximine(BSO)、glutathione disulfide(GSSG)、glutathione(GSH)以及蔗糖(sucrose), 隨後利用qPCR檢測相關基因之表現情況。從結果顯示,OgTPS1會受中高環境溫度、 BSO、GSSG、GSH以及蔗糖之誘導表現。同時檢測了OgSPLs與FT、LFY以及AP1 後,發現OgSPLs與FT、LFY以及AP1會受到中高環境溫度、BSO、GSSG與蔗糖處 理提高表現情況,反之受到GSH所抑制表現。關於此實驗結果,說明OgTPS1會協 助植物抵抗氧化逆境,並且其參與了前人發現之文心蘭中高環境溫度誘導開花途 徑,同時也可作為糖類誘導開花途徑的關鍵因子。 | zh_TW |
| dc.description.abstract | The mechanism of flowering and phase transition from vegetative to reproductive stage is a mysterious event in Oncidesa. In previous study, we found that high ambient temperature-induced flowering pathway in Oncidesa. This floral induction in response to thermal stress is associated with a significantly increased reactive oxygen species (ROS) level and active Ascorbate acid(ASA)-Glutathione(GSH) pathway. The redox signal will induce Oncidesa SQUAMOSAPROMOTER BINDING PROTEIN-LIKEs(OgSPLs), and then it will elevate the expression level of Flowering locus T(FT), LEAFY(LFY) and APETALA 1(AP1). Recent studies indicate that trehalose-6-phosphate(T6P), which is synthesized by trehalose-6-phosphate synthase(TPS), will be a signal molecule to influence stress tolerance and regulate flowering time. Researches point out that increasing sucrose levels will positively affect the abundance of T6P in plants. As mentioned above, we want to know whether OgTPS1 will be involved in high ambient temperature-induced flowering pathway in Oncidesa or not. We also want to explore the relationship between OgTPS1 and sucrose. Afterwards, we use high temperature, glutathione disulfide(GSSG), glutathione(GSH), buthionine sulfoximine(BSO) and sucrose to treat Oncidesa, and then we use qPCR to detect the expression level of several genes. Studies reveal that OgTPS1 is induced by high-ambient temperature, GSSG, GSH, BSO and sucrose. On the other hand, OgSPLs, FT, LFY and AP1 were induced by high- ambient temperature, GSSG, BSO and sucrose, and repressed by GSH. Taken together, OgTPS1 may confer plants with stress resistance, and is involved in high ambient temperature-induced flowering pathway. Moreover, OgTPS1 acts as a key factor in sugar induced flowering pathway. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:15:47Z (GMT). No. of bitstreams: 1 ntu-107-R05b42013-1.pdf: 9643536 bytes, checksum: 96312b8b699a39bee9a54468609ea34d (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝......................................................................................................... ii
中文摘要...................................................................................................iii Abstract ..................................................................................................iv 圖表目錄...................................................................................................viii 附錄圖表目錄............................................................................................ix 第一章 前言...............................................................................................1 第一節 文心蘭概述.....................................................................................1 第二節 植物開花生理..................................................................................4 第三節 TPS1(trehalose-6-phosphatesynthase1)對植物生理之影響.............10 第四節 研究目的.........................................................................................14 第二章 材料與方法......................................................................................16 (A) 實驗材料 ..............................................................................................16 (B) 實驗方法 ..............................................................................................16 第一節 基因表現量測定...............................................................................16 第二節 BSO、GSSG以及GSH處理文心蘭.....................................................20 第三節 中高環境溫度處理文心蘭..................................................................20 第四節 蔗糖處理文心蘭................................................................................20 第五節 基因釣取..........................................................................................21 第三章 結果.................................................................................................23 第一節 OgTPS1基因之選殖、序列分析與親緣性分析.....................................23 第二節 OgTPS1於文心蘭中之表現情況.........................................................24 第三節 OgTPS1基因表現與氧化還原逆境(redoxhomeostasis)的關係.............25 第四節 OgTPS1 的基因表現與中高環境溫度及 BSO 之關係............................27 第五節 施用 50mM 蔗糖溶液對文心蘭開花與 OgTPS1 表現之影響 ................27 第四章 討論..................................................................................................29 第一節 OgTPS1於文心蘭中之表現情況..........................................................29 第二節 OgTPS1與中高環境溫度誘導開花路徑之關係......................................32 第三節 OgTPS1與蔗糖之關係........................................................................34 第四節 未來展望...........................................................................................36 參考文獻......................................................................................................37 | |
| dc.language.iso | zh-TW | |
| dc.subject | OgTPS1基因 | zh_TW |
| dc.subject | 中高環境溫度 | zh_TW |
| dc.subject | 蔗糖 | zh_TW |
| dc.subject | 開花 | zh_TW |
| dc.subject | 文心蘭 | zh_TW |
| dc.subject | flowering | en |
| dc.subject | high ambient temperature | en |
| dc.subject | sucrose | en |
| dc.subject | OgTPS1 | en |
| dc.subject | Oncidesa | en |
| dc.title | 探討OgTPS1基因對於調控文心蘭生長與 開花所扮演的功能 | zh_TW |
| dc.title | Functional analysis of OgTPS1(trehalose-6-phosphate synthesis 1) regulating growth and flowering
in Oncidesa Gower Ramsey ‘Honey Angel’ | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳賢明,邱崇益,詹明才,謝旭亮 | |
| dc.subject.keyword | OgTPS1基因,中高環境溫度,蔗糖,開花,文心蘭, | zh_TW |
| dc.subject.keyword | OgTPS1,high ambient temperature,sucrose,flowering,Oncidesa, | en |
| dc.relation.page | 70 | |
| dc.identifier.doi | 10.6342/NTU201803122 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-14 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 9.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
