Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71935
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林達德(Ta-Te Lin)
dc.contributor.authorKuang-Chin Wuen
dc.contributor.author吳匡晉zh_TW
dc.date.accessioned2021-06-17T06:15:37Z-
dc.date.available2018-09-25
dc.date.copyright2018-09-25
dc.date.issued2018
dc.date.submitted2018-08-16
dc.identifier.citation安 奎、 何鎧光、陳裕文。2004。養蜂學。第二版。台北:華香園。
陳 秋。2010。蜜蜂覓食行為監測與分析影像系統之研究。碩士論文。台北:臺灣大學生物產業機電工程學研究所。
蔡靜偉。2016。箱內蜜蜂行為影像監測與分析。碩士論文。台北:臺灣大學生物產業機電工程學研究所。
張惠君。2010。益達胺的亞致死劑量對蜜蜂學習行為之影響。碩士論文。台北:臺灣大學昆蟲學研究所學位論文。
陳智偉。2016。基於深層類神經網路之音訊事件偵測系統。碩士論文。台北:臺北科技大學電子工程系。
Avidan, S. 2004. Support vector tracking. IEEE transactions on pattern analysis and machine intelligence 26(8):1064-1072.
Benard, J., S. Stach, and M. Giurfa. 2006. Categorization of visual stimuli in the honeybee Apis mellifera. Animal cognition 9(4):257-270.
Bromenshenk, J., R. A. Seccomb, S. D. Rice, and R. T. Etter. 2005. Honey bee monitoring system for monitoring bee colonies in a hive. Google Patents.
Campbell, J., L. Mummert, and R. Sukthankar. 2008. Video monitoring of honey bee colonies at the hive entrance. Visual observation & analysis of animal & insect behavior, ICPR 8:1-4.
Chahl, J. S., M. V. Srinivasan, and S.-W. Zhang. 2004. Landing strategies in honeybees and applications to uninhabited airborne vehicles. The International Journal of Robotics Research 23(2):101-110.
Ciresan, D. C., U. Meier, J. Masci, L. Maria Gambardella, and J. Schmidhuber. 2011. Flexible, high performance convolutional neural networks for image classification. In IJCAI Proceedings-International Joint Conference on Artificial Intelligence. Barcelona, Spain.
Davis, J., and M. Shah. 1994. Recognizing hand gestures. In European Conference on Computer Vision. Springer.
De Leon, R. E., W. L. MacHugh, A. R. Seelye, J. M. Murphy, D. Smith, T. Moxon, T. Hudson, and M. Spivak. 2015. Monitoring the state of a beehive. Google Patents.
Di Prisco, G., D. Annoscia, M. Margiotta, R. Ferrara, P. Varricchio, V. Zanni, E. Caprio, F. Nazzi, and F. Pennacchio. 2016. A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health. Proceedings of the National Academy of Sciences:201523515.
Engel, S. 2013. Apparatus for continuous weight monitoring of beehives. Google Patents.
Feldman, A., and T. Balch. 2004. Representing honey bee behavior for recognition using human trainable models. Adaptive behavior 12(3-4):241-250.
Fernández-Caballero, A., J. C. Castillo, and J. M. Rodríguez-Sánchez. 2012. Human activity monitoring by local and global finite state machines. Expert Systems with Applications 39(8):6982-6993.
Hinz, S. 2005. Fast and subpixel precise blob detection and attribution. In Image Processing, 2005. ICIP 2005. IEEE International Conference on. IEEE.
Jiang, J.-A., E.-C. Yang, C.-L. Chuang, C.-H. Chen, C.-H. Wang, Y.-K. Huang, M.-S. Liao, and J.-Y. Wu. 2015. Honeybee behavior monitoring sevice and honeybee behavior monitoring system. Google Patents.
Lee, J.-G., J. Han, X. Li, and H. Gonzalez. 2008. TraClass: trajectory classification using hierarchical region-based and trajectory-based clustering. Proceedings of the VLDB Endowment 1(1):1081-1094.
Lee, J.-G., J. Han, and K.-Y. Whang. 2007. Trajectory clustering: a partition-and-group framework. In Proceedings of the 2007 ACM SIGMOD international conference on Management of data. ACM.
Owens, J., and A. Hunter. 2000. Application of the self-organising map to trajectory classification. In Visual Surveillance, 2000. Proceedings. Third IEEE International Workshop on. IEEE.
Redmon, J., S. Divvala, R. Girshick, and A. Farhadi. 2016. You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition.
Seeley, T. D. 1982. Adaptive significance of the age polyethism schedule in honeybee colonies. Behavioral Ecology and Sociobiology 11(4):287-293.
Seeley, T. D. 1983. Division of labor between scouts and recruits in honeybee foraging. Behavioral ecology and sociobiology 12(3):253-259.
Shaw, J. A., P. W. Nugent, J. Johnson, J. J. Bromenshenk, C. B. Henderson, and S. Debnam. 2011. Long-wave infrared imaging for non-invasive beehive population assessment. Optics express 19(1):399-408.
Strausser, K. A., and H. Kazerooni. 2011. The development and testing of a human machine interface for a mobile medical exoskeleton. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on. IEEE.
Struye, M., H. Mortier, G. Arnold, C. Miniggio, and R. Borneck. 1994. Microprocessor-controlled monitoring of honeybee flight activity at the hive entrance. Apidologie 25(4):384-395.
Tong, S., and D. Koller. 2001. Support vector machine active learning with applications to text classification. Journal of machine learning research 2(Nov):45-66.
Vanengelsdorp, D., J. Hayes Jr, R. M. Underwood, and J. S. Pettis. 2010. A survey of honey bee colony losses in the United States, fall 2008 to spring 2009. Journal of apicultural research 49(1):7-14.
Wu, C. 2013. An Imaging System for Monitoring Honeybee In-and-out Activity Using Laser Labeling Method. National Taiwan University, Department of Bio-Industrial Mechatronics Engineering, Taipei.
Zhang, M.-L., and Z.-H. Zhou. 2007. ML-KNN: A lazy learning approach to multi-label learning. Pattern recognition 40(7):2038-2048.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71935-
dc.description.abstract世界上的糧食與經濟作物多依賴蜜蜂的傳遞花粉,但近年所發生的蜜蜂族群崩潰症候群,造成大量的蜜蜂族群無故消失,對於農業生產影響重大,因此極需透過研究蜜蜂行為與建置有效的研究工具以了解該現象之成因。在探索成因之前,必須先對蜜蜂生態有更深的理解,而蜜蜂於蜂巢內透過不同的分工及不同的外力因素會產生不同的行為,這是蜜蜂生態裡相當重要的資訊。基於此,本研究以蜜蜂巢內行為影像監測系統進行實驗,將欲觀察的蜜蜂貼上防水文字標籤,使用標籤辨識與軌跡追蹤等影像處理技術,擷取並紀錄樣本蜜蜂於蜂巢內的運動軌跡(蔡, 2016)。藉由此標籤辨識技術,可將蜜蜂分群標記,透過軌跡追蹤技術,得到不同族群的蜜蜂運動軌跡,建立一個有限狀態機模型對其軌跡進行分析,獲得蜜蜂的行為模式。並利用此行為模式資訊,透過機器學習及深度學習的方法,建立一套蜜蜂行為軌跡分析方法,分析不同分工及不同外力影響下蜜蜂的行為差異。
本研究設計三種實驗進行驗證此分析方法,第一部份為利用有限狀態機模型所分析出來的行為模式資訊,分析內、外勤蜂的行為差異。由實驗結果得知,利用此行為模式資訊可成功分類內、外勤蜂,同時驗證了有限狀態機模型建立的合理性。第二部分為不同箱但同種類的蜜蜂行為模式比較,由實驗結果得知,只要同是內勤蜂或是外勤蜂,即使生活在不同箱的蜜蜂,其行為模式的表現依舊大致相同,驗證了有限狀態機模型分析方法的可行性。第三部分為透過餵食含有不同濃度農藥的糖水,觀察其行為與正常蜜蜂的差異。由實驗結果得知,若蜜蜂受到農藥影響,其行為亦會受到影響,且不同濃度造成的差異性也不同。
zh_TW
dc.description.abstractHoney bees are important pollinator of our agriculture crops. Most of the food we eat daily is depend on honey bee for pollination. However, massive deaths of honey bees have been reported all around the world. This syndrome named colony collapse disorder or CCD. This phenomenon is being cause a significant impact on the agriculture production. Therefore, it is a need to develop an effective tool to measure the causes of CCD. Honey bee’s trajectories inside the beehive are interesting and important information for understand the individual as well as whole colony behavior. In order to analyze the behavior of individual honey bees, a circular paper tag was glued on the thorax of each honey bee for observation. We developed image processing technique for label recognition and tracking, the movement of honey bees inside the hive is recorded and analyzed. This study labeled honey bees by groups: young bees and forager bees; our imaging algorithm tracked all labeled bees and provided the trajectories of individual honey bees; these trajectories later divided into different stages used to feed our finite state machine (FSM) model, the FSM model was used to analyze the trajectories of honey bee, and get the pattern behavior. Machine learning and deep learning models was trained to classify and recognize different groups of honey bees based on their pattern behavior.
To evaluate the performance of the system, multiple set-ups were deployed and several experiments were designed. The experiment involves the comparison of movement inside the hive of in-hive and forager bees. And assessment of pesticide effect on honey bee’s behavior inside the hive. Results of the experiment proved the reliable of the FSM model to classify the movements of different groups of honey bees. We also found out that honey bees of the same group share same behavior pattern. The experiment results also indicate that honey bees reflect different to different concentration of pesticide.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:15:37Z (GMT). No. of bitstreams: 1
ntu-107-R05631026-1.pdf: 3217058 bytes, checksum: d97e0a9e3b7b738924b29a1295d7e7f7 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究目的 2
第二章 文獻探討 4
2.1 蜂群崩饋症候群 (Colony Collapse Disorder, CCD) 4
2.2 農藥對蜜蜂的影響 5
2.3 蜜蜂運動行為的監測與分析 6
2.3.1 監測系統 6
2.3.2 蜜蜂運動行為軌跡分類與分析 12
2.4 有限狀態機 (Finite State Machine, FSM) 13
2.5 多物件偵測演算法 16
2.5.1 YOLO (You Only Look Once) 16
2.5.1 Blob (Binary Large Object) 18
2.6 機器學習與深度學習應用於分類與辨識 19
2.6.1 主成份分析 (Principle Component Analysis, PCA) 19
2.6.2 支持向量機 (Support Vector Machine, SVM) 20
2.6.3 最鄰近分析法 (K-Nearest Neighbor, KNN) 20
2.6.4 深度神經網路 (Deep Neural Network, DNN) 21
第三章 研究設備與方法 23
3.1 影像監測系統 23
3.1.1 影像監測系統硬體架構 23
3.1.2 蜜蜂運動軌跡追蹤系統 24
3.1.3 蜜蜂族群數量偵測系統 25
3.2 蜜蜂運動軌跡行為分析 27
3.2.1 有限狀態機模型之建立 27
3.2.1.1 副軌跡切割個數之探討 29
3.2.1.2 運動狀態之定義 30
3.2.1.3 有限狀態機模型參數之定義 32
3.2.1.4 有限狀態機模型狀態轉換之方法 34
3.2.1.5 行為模式序列之應用 34
3.2.1.6 狀態與行為模式間之轉換 36
3.2.1.7 有限狀態機模型之驗證 37
3.2.2分類與辨識 38
3.2.2.1 蜜蜂分工多樣性 38
3.2.2.2 不同分工類型之蜜蜂的分類 39
3.2.2.3 不同分工類型之蜜蜂的辨識 40
3.2.2.3.1機器學習 40
3.2.2.3.2深度學習 43
3.3實驗設計 44
3.3.1 蜜蜂飼養狀況 44
3.3.2 同分工類型之蜜蜂的運動比較行為實驗 45
3.3.3 不同分工類型之蜜蜂的運動行為比較實驗 46
3.3.4 不同濃度農藥針對同分工類型之蜜蜂的運動行為比較實驗 46
第四章 結果與討論 48
4.1 有限狀態機模型之建立 48
4.1.1 有限狀態機模型之比較 51
4.2 不同分工類型之蜜蜂的行為模式比例比較 53
4.3 有限狀態機模型之驗證 55
4.3.1 行為模式比例比較之驗證 55
4.4 不同分工類型之蜜蜂的辨識 58
4.5 農藥對蜜蜂影響之分析 61
4.5.1 不同濃度農藥下內勤蜂之行為模式比例分析 61
4.5.2 不同濃度農藥下外勤蜂之行為模式比例分析 67
4.5.3 不同濃度農藥下蜜蜂族群個數變化之分析 70
4.5.4 不同濃度農藥下蜜蜂族群之辨識 74
第五章 結論與建議 77
5.1 結論 77
5.2 建議 78
參考文獻 80
dc.language.isozh-TW
dc.subject有限狀態機模型zh_TW
dc.subject行為模式zh_TW
dc.subject深度學習zh_TW
dc.subject機器學習zh_TW
dc.subject影像處理zh_TW
dc.subjectDeep Learningen
dc.subjectPattern Behavioren
dc.subjectMachine Learningen
dc.subjectImage Processingen
dc.subjectFinite State Machine Modelen
dc.title有限狀態機模型應用於蜂箱內蜜蜂運動行為分析zh_TW
dc.titleApplication of Finite State Machine Model for
the Analyses of Honeybee Movement Behavior in Beehive
en
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee楊恩誠,江昭皚
dc.subject.keyword有限狀態機模型,行為模式,深度學習,機器學習,影像處理,zh_TW
dc.subject.keywordFinite State Machine Model,Pattern Behavior,Deep Learning,Machine Learning,Image Processing,en
dc.relation.page83
dc.identifier.doi10.6342/NTU201803831
dc.rights.note有償授權
dc.date.accepted2018-08-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved