請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71930完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 侯詠德(Yung-Te Hou) | |
| dc.contributor.author | Meng-Ju Hsieh | en |
| dc.contributor.author | 謝孟汝 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:15:25Z | - |
| dc.date.available | 2019-08-24 | |
| dc.date.copyright | 2018-08-24 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-19 | |
| dc.identifier.citation | 1. 施議強,侯承伯,朱永譁. Statin 降血脂藥物,台灣醫界 2003,9月,第46卷第9期
2. 羅運權、吳孟超。1997。肝細胞生長因數。新消化病學雜誌,5(3),198-199。 3. Magid, A.G., & Wayne E. C. 2014. Discovery of Innovative Therapeutics: Today’s Realities and Tomorrow’s Vision. 2. Pharma’s Challenges and Their Commitment to Innovation. J. Med. Chem., 57 (13), 5525–5553. 4. Langer, R. and Vacanti, P. J., 1993. Tissue Engineering. Science, 260(5110), 920–926. 5. Sangeeta, N. B., Donald, E. I., 2014. Microfluidic organs-on-chips. Nature Biotechnology, 32, 760–772. 6. Wolfe, D.B., Qin, D., Whitesides, G.M. 2010. Rapid prototyping of microstructures by soft lithography for biotechnology. Microengineering in Biotechnology, 81-107. 7. Rodriguez-Antona, C., Donato, M.T., Boobis, A., Edwards, R.J., Watts, P.S., Castell, J.V., et al. 2002. Cytochrome P450 expression in human hepatocytes and hepatoma cell lines: molecular mechanisms that determine lower expression in cultured cells. Xenobiotica, 32, 505-520. 8. Wikswo, J.P., Block, F.E. 3rd, Cliffel, D.E., Goodwin, C.R., Marasco, C.C., Markov, D.A., et al. 2013. Engineering Challenges for Instrumenting and Controlling Integrated Organ-on-Chip Systems. IEEE Trans Biomed Eng, 60 , 682-690. 9. Huh, D., Matthews, B.D., Mammoto, A., Montoya-Zavala, M., Hsin H.Y., Ingber, D.E. 2010. Reconstituting organ-level lung functions on a chip. Science, 328, 1662-1668 10. Jang, K.J., Suh, K.Y. 2010. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab a Chip, 10(1), 36-42 11. Ng, C.P., Zhuang, Y., Lin, A.W.H., Teo, J.C.M. 2013. A fibrin-based tissue-engineered renal proximal tubule for bioartificial kidney devices: development, characterization and in vitro transport study. Int J Tissue Eng, 10. 12. Musah, S., Mammoto, A., Ferrante, T.C., Jeanty, S.S.F., Hirano-Kobayashi, M., Mammoto T., et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat Biomed Eng, 1 (5). 13. Kimura, H., Yamamoto, T., Sakai, H., Sakai, Y., Fujii T. 2008. An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models. Lab a Chip, 8 (5), 741-746. 14. Crettol, S., Petrovic, N., and Murray, M. 2010. Pharmacogenetics of phase I and phase II drug metabolism. Current Pharmaceutical Design, 16, 204-219. 15. Blouin, A., Bolender, R.P., Weibel, E.R. 1977. Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study. J. Cell Biol., 72, 441-455. 16. Singhvi, R., Kumar, A., Lopez, G.P., Stephanopoulos, G.N., Wang D.I., Whiteside,s G.M., Ingber, D.E., 1994. Engineering cell shape and function. Science, 264, 696–698 . 17. Adams, D. H., Eksteen. B., 2006. Aberrant homing of mucosal T cells and extra-intestinal manifestations of inflammatory bowel disease. Nature Reviews in Immunology, 6, 244-251. 18. Chen, C.S., Mrksich, M., Huang, S., Whitesides, G. & Ingber, D.E., 1997. Geometric control of cell life and death. Science, 276, 1425–1428. 19. Lee, P.J., Hung, P.J., Lee, L.P. 2007. An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol Bioeng., 97(5), 1340-6. 20. Lee, S.A., No-da, Y., Kang, E., Ju, J., Kim, D.S., Lee S.H. 2013. Spheroid-based three-dimensional liver-on-a-chip to investigate hepatocyte–hepatic stellate cell interactions and flow effects. Lab Chip, 13, 3529-3537 21. Ho, C.T., Lin, R.Z., Chen, R.J., Chin, C.K., Gong, S.E., Chang, H.Y., Peng, H.L., Hsu, L., Yew, T.R., Chang, S.F., and Liu, C.H. 2013. Liver-cell patterning Lab Chip: mimicking the morphology of liver lobule tissue. Lab Chip, 13, 3578-3587. 22. Prodanov, L., Jindal, R., Bale, S.S., Hegde, M., McCarty, W.J., Golberg, I., Bhushan, A., Yarmush, M.L., Usta, O.B. 2016. Long-term maintenance of a microfluidic 3D human liver sinusoid. Biotechnol Bioeng. 113(1), 241-6. 23. Imura, Y., Sato, K., and Yoshimura, E. 2010. Micro Total Bioassay System for Ingested Substances: Assessment of Intestinal Absorption, Hepatic Metabolism, and Bioactivity. Anal. Chem., 82 (24), 9983–9988. 24. Kamei, K.I., Kato, Y., Hirai, Y., Ito, S., Satoh, J., Oka, A., Tsuchiya, T., Chena, Y. and Tabata, O. 2017. Integrated heart/cancer on a chip to reproduce the side effects of anti-cancer drugs in vitro. RSC Adv., 7, 36777-36786. 25. Jane, A.C., Anne, M.T., Rebecca, J. R., Andrea, L., Douglas, C. B., Karen, L. M., Electra, D. P., Mara, Z. V., Curt, D. F., Rowan, T. C., 2006. Breast Cancer Growth Prevention by Statins, Cancer Res, 66, 8707. 26. Farwell, W. R., D’Avolio,L. W., Scranton, R. E., Lawler, E. V., Gaziano, J. M. Statins and Prostate Cancer Diagnosis and Grade in a Veterans Population. JNCL. 103 (2011) 885-892. 27. Farwell, W. R., Scranton, R. E., Lawler, E. V., Lew, R. A., Brophy, M. T., Fiore, L. D., Gaziano, J. M., 2008. The Association Between Statins and Cancer Incidence in a Veterans Population. JNCL. 100, 134-139. 28. Boudreau, D. M., Koehler, K., Rulyak, S. J., Haneuse, S., Harrison, R., Mandelson, M. T., 2008. Cardiovascular Medication Use and Risk for Colorectal Cancer. Cancer Epidemiol. Biomarkers Prev. 17, 3076-3080. 29. Duffy, D.C., McDonald, J.C., Schueller, O.J. & Whitesides, G.M., 1998. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem., 70, 4974–4984. 30. Unger, M.A., Chou, H.P., Thorsen, T., Scherer, A., Quake, S.R., 2000. Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography. Science, 288(5463):113-6. 31. Dongeun, Huh, Benjamin, D. M., Akiko M., Martín, M.Z., Hong Y.H., Donald, E.I., 2010. Reconstituting Organ-Level Lung Functions on a Chip. Science, 328, 1662-1668. 32. Eric, W. E., Anthony, B.& Dongeun, H., 2015. Organs-on-chips at the frontiers of drug discovery. Nature Reviews Drug Discovery, 14, 248–260. 33. Shan, J., Stevens, K. R., Trehan, K., Underhill, G. H., Chen, A. A., and Bhatia, S. N. 2011. Hepatic tissue engineering. In Molecular pathology of liver diseases, 321-342. 34. Hou, Y. T., Ijima, H., Matsumoto, S., Kubo, T., Takei, T., Sakai, S., Kawakami. K., 2010. Effect of a hepatocyte growth factor/heparin-immobilized collagen system on albumin synthesis and spheroid formation by hepatocytes. J. Biosci. Bioeng. 110, 208-216. 35. Hou, Y. T., Ijima, H., Takei, T., Kawakami. K., 2011, Growth factor/heparin-immobilized collagen gel system enhances viability of transplanted hepatocytes and induce angiogenesis. J. Biosci. Bioeng. 112, 265-272. 36. Hou, Y. T., Ijima, H., Shirakigawa, N., Takei, T., Kawakam. K., 2012. Development of hepatocyte/spheroid-embedded heparin-immobilized collagen-gel-filled macroporous scaffolds for hepatocyte transplantation. Biochem. Eng. J. 69, 172-181. 37. Baker M., 2011. A Living System on a Chip. Nature, 471, 661-665. 38. Karl, A. Piez, Andew, Miller, 1974, The Structure of Collagen Fibrils, Journal of Supramolecular Structure, 2, 121-137. 39. Seglen, P. O. 1976. Preparation of isolated rat liver cells. Methods in Cell Biology, 13, Academic Press, New York, 29–83. 40. Joseph, H., Hyuna, L., and Noo, L.J., 2007. Fabrication of a Microfluidic Device for the Compartmentalization of Neuron Soma and Axons. J. Vis. 7, 261. 41. Niu Y., Wan A., Lin Z., Luc X., Wan G., 2018. N6-methyladenosine modification: a novel pharmacological target for anti-cancer drug development. Acta Pharmaceutica Sinica B. 42. Baulies, A., Montero, J., Matías, N., Insausti, N., Terrones, O., Basañez, G., Vallejo, C., Conde de La Rosa, L., Martinez, L., Robles, D., Morales, A., Abian, J., Carrascal, M., Machida, K., Kumar, D. B. U., Tsukamoto, H., Kaplowitz, N., Garcia-Ruiz, C., Fernández-Checa, J. C., 2018. The 2-oxoglutarate carrier promotes liver cancer by sustaining mitochondrial GSH despite cholesterol loading. Redox Biology, 14, 164–177. 43. Muthukumaran, S., Jaideva, J., Umashankara, V., Sulochanab K.N., 2017. Ornithine and its role in metabolic diseases: An appraisal. Biomedicine & Pharmacotherapy, 86, 185–194. 44. Milkevitch, M., Shim, H., Pilatus, U., Pickup, S., Wehrle, J. P., Samid, D., Poptani, H., Glickson, J. D., Delikatny, E. J., 2005. Increases in NMR-visible lipid and glycerophosphocholine duringphenylbutyrate-induced apoptosis in human prostate cancer cells. Biochimica et Biophysica Acta, 1734, 1-12. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71930 | - |
| dc.description.abstract | Statin是一種降血脂藥物,在經過肝臟細胞色素CYP450-3A4後所產生的鄰烴基代謝物和β-氧化代謝物,仍具有相當的藥物活性,這些代謝物在整個抗血脂反應過程中佔了70%的效果。而這樣的代謝物除了能降低血脂之外,對於罹癌的臨床病人亦有療效。Statin對癌細胞的抑制機制可能是由於其會抑制內源性的膽固醇生成和阻止蛋白質異戊二烯化(Prenylation)來達到阻止癌細胞增生和轉移的治療效果。然而其機制仍不明確,因此本研究利用自行開發的仿生肝臟微流道晶片來模擬體外的微型抗癌藥物代謝工廠,以期能做為高通量細胞毒性檢測的平台。
我們首先針對Statin以及其活性代謝物對癌細胞的作用影響,在in vitro study下進行探討驗證。實驗結果證實經由肝細胞代謝後所產生的活性代謝物會對人類前列腺癌細胞(PC3)及人類肝癌細胞(HepG2)的活性有明顯抑制。而在高濃度Simvastatin(100µM)的添加條件下,經由肝細胞代謝後所產生的活性代謝物則會使PC3及HepG2的生存率分別下降約20%及15%。 另外一方面,肝細胞於本研究開發的仿生肝臟微流道平台的培養環境下,肝的白蛋白分泌量會比在一般培養皿的環境下提高三倍;尿素分泌量則會提高四倍;由基因表達分析檢測結果亦顯示,CYP1A2基因表現量能提高19倍、且CYP3A23的基因表現量亦提高17倍。由上述生化分析結果可以得知,在此仿生肝臟微流道晶片的培養條件下,可以促進肝細胞的生存活性及機能表現。此平台不但能夠良好的模擬體內肝臟生存情況更使其能具備良好的肝機能。 此外,由實驗結果亦證實Statin經由肝臟酵素轉化成活性代謝物後能有效的毒殺PC3、HepG2兩種癌細胞,並且對於初代肝細胞以及纖維母細胞等正常細胞並沒有顯著的傷害。本研究所開發的仿生肝臟微流道晶片不但更符合真實的體內環境,亦能做為體外藥物代謝和毒物研究平台。將來此平台亦希望能夠結合即時細胞攝影的功能,期許能於體外進行一系列且高通量的生化機能、基因表現、以及代謝作用等之模擬分析。相信這樣的研究對於肝組織工程及器官晶片的領域具有很大的開發潛力。 | zh_TW |
| dc.description.abstract | Statin is a competitive inhibitor of HMG-CoA reductase. And HMG-CoA is the enzyme of the mevalonate pathway required for the biosynthesis of cholesterol. In addition to its capacity of lower cholesterol levels and against the cardiovascular disease, statin also consider as a kind of drug of anti-cancer. Some researchers consider statin may induce apoptosis in various cancer cells, but still don’t know its pathway. For this purpose, we developed a microfluidic device that integrated rat hepatocyte and cancer cell on a chip. The aim of this design is to recapitulate the effects of statin in cancer cell.
First, we do the preliminary study in vitro to survey the effect of statin in cancer cell. Results show that hepatic metabolism of statin which released from cells in cell culture medium of statin inhibit PC3 and HepG2 cells. HepG2 cells treated with 100 µM hepatic metabolism statin reduced 15% compared to those cells treated with statin. And PC3 cells treated with 100 µM hepatic metabolism statin reduced 20% compared to those cells treated with statin. On the other hand, we demonstrate that rat primary hepatocyte cultured in microfluidic chip can be maintained successfully for 3 days. Besides, we observed the albumin synthesis increase three times and urea excretion increase four times under flow compared to traditional dish. The activity of CYP1A2 gene expression increase 19 times and CYP3A23 gene expression increase 17 times. In conclusion, we propose a proof of concept for recapitulation of the effects of statin an anti-cancer drug in vitro. And we develop a convincing liver-on-chip devise. This liver-on-a-chip should be further evaluated in other drug related studies. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:15:25Z (GMT). No. of bitstreams: 1 ntu-107-R04631038-1.pdf: 7987661 bytes, checksum: 86800caac6f24c2becb2d10afc5fbbe9 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 目錄
謝辭 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 前言 1 1.1 背景 1 1.2 研究目的 3 第二章 文獻探討 4 2.1 仿生肝臟微流道晶片 4 2.1.1 Microfluidic devices微流道系統 4 2.1.2 微流道系統應用於細胞培養 5 2.1.3 Organ-on-chip 6 2.1.3.1 Lung-on-chip 7 2.1.3.2 Kidney-on-chip 8 2.1.3.3 Gut-on-chip 9 2.1.4 Liver-on-chip 10 2.1.4.1 肝組織工程 10 2.1.4.2 Liver-on-chip 11 2.1.5 Body-on-chip 16 2.2 Statin 抑制血脂生成藥物 18 2.2.1 藥物介紹 18 2.2.2 Statin 類藥物的藥理機轉 20 2.2.3 Statin藥物用於臨床上癌症治療的效用 21 2.2.3.1支持意見 21 2.2.3.2反對意見 23 2.2.3.3 其他看法 24 2.3 本研究的創新點 25 第三章 研究方法 27 3.1 實驗藥品、耗材、儀器設備與實驗動物 27 3.1.1 實驗藥品 27 3.1.2 實驗耗材 28 3.1.3 實驗儀器設備 28 3.1.4 實驗動物 29 3.2細胞培養 30 3.2.1 癌細胞培養 30 3.2.2 肝細胞培養 31 3.3 Statin 對於細胞活性的影響 32 3.3.1 Statin對於癌細胞活性的影響之 32 3.3.2 Statin經由肝細胞代謝後對於癌細胞活性之影響 32 3.3.3 Statin 對於細胞活性的影響之相關檢測 33 3.3.3.1粒線體活性檢測 33 3.3.3.2細胞DNA 含量檢測 33 3.4 仿生肝臟晶片及癌晶片製作 34 3.4.1 晶片光罩設計 34 3.4.2 微流道製程 35 3.4.2.1軟微影技術製作微流道矽晶圓板模組 36 3.4.2.2 PDMS 微流道翻模 38 3.4.2.3 PDMS和玻璃黏合 39 3.5 細胞於微流道晶片上的培養 40 3.5.1初代肝細胞於仿生肝臟微流道晶片上的培養 40 3.5.2 待側癌細胞於待測癌細胞微流道晶片上的培養 41 3.5.3 仿生肝臟微流道串聯癌細胞晶片檢測藥物平台建立 42 3.6 仿生肝臟微流道晶片的肝活性與肝機能之檢測方法 43 3.6.1 Albumin的分泌量檢測 43 3.6.2 Urea的分泌量檢測 43 3.6.3 細胞生存率 43 3.6.4 Quantitative real-time PCR 基因表達分析檢測 44 第四章 結果與討論 46 4.1 Statin藥物對於肝細胞代謝時間最佳化條件的討論 46 4.2 Statin經由肝臟代謝後對於細胞的活性測試 49 4.3 Statin藥物經過肝細胞代謝後由LC-mass檢測代謝物分析 54 4.4 仿生肝臟微流道生物晶片的建立 57 4.5 仿生肝臟微流道晶片培養肝細胞機能探討 59 4.5.1 Albumin的分泌量 59 4.5.2 Urea尿素分泌量 61 4.5.3 Quantitative real-time PCR 基因表達分析檢測 63 4.5.4 細胞生存率及細胞貼附情形 65 4.6 Statin對仿生肝臟微流道晶片和癌細胞晶片的機能影響 68 4.6.1 Albumin的分泌量 69 4.6.2 Urea尿素分泌量 71 4.6.3細胞生存率及細胞貼附情形 73 第五章 結論與未來展望 75 5.1 結論 75 5.2 未來工作、展望 77 參考文獻 80 | |
| dc.language.iso | zh-TW | |
| dc.subject | 肝晶片 | zh_TW |
| dc.subject | 抑制膽固醇 | zh_TW |
| dc.subject | 抗癌藥物 | zh_TW |
| dc.subject | 微流道晶片 | zh_TW |
| dc.subject | 肝臟 | zh_TW |
| dc.subject | Metabolism | en |
| dc.subject | microfluidics | en |
| dc.subject | rat primary hepatocyte | en |
| dc.subject | statin | en |
| dc.subject | HMG-CoA reductase | en |
| dc.subject | anti-cancer | en |
| dc.subject | liver-on-a-chip | en |
| dc.subject | Hepatotoxicity | en |
| dc.title | 仿生肝臟微流道晶片的建立與抑制膽固醇生成藥物Statin之抗癌效果測試 | zh_TW |
| dc.title | The anti-cancer effect of statins on Liver-on-chip platform | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 盧彥文(Yen-wen Lu),林珍芳,黃祥博 | |
| dc.subject.keyword | 肝臟,微流道晶片,抗癌藥物,抑制膽固醇,肝晶片, | zh_TW |
| dc.subject.keyword | liver-on-a-chip,microfluidics,rat primary hepatocyte,statin,HMG-CoA reductase,anti-cancer,Metabolism,Hepatotoxicity, | en |
| dc.relation.page | 84 | |
| dc.identifier.doi | 10.6342/NTU201804008 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-19 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 7.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
