請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71929完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳世芳 | |
| dc.contributor.author | Sheng-Hung Lee | en |
| dc.contributor.author | 李晟宏 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:15:22Z | - |
| dc.date.available | 2028-12-31 | |
| dc.date.copyright | 2018-10-12 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-20 | |
| dc.identifier.citation | 王為一、李淑美,林木連、章加寶、曾方明、曾信光、蔡俊明、蕭建興、蕭素等。 2004。 植物保護圖鑑系列4。 行政院農業委員會動植物防疫檢疫局。
Ahmed, M. & Sana, D.L. (1990). Biological aspects of red spider mite, Oligonychus coffeae (Nietner) in tea. Bangladesh J. Zool., 18, 75-78. Al-Hiary, H., Bani-Ahmad, S., Reyalat, M., Braik M. & Alrahamneh, Z. (2011). Fast and Accurate Detection and Classification of Plant Diseases. International Journal of Computer Applications, 17(1), 31-38. Amara, J., Bouaziz, B., & Algergawy, A. (2017). A Deep Learning-based Approach for Banana Leaf Diseases Classification. BTW workshop, Stuttgart, pp. 79-88. Barbedo, J. G. A. (2014). An Automatic Method to Detect and Measure Leaf Disease Symptoms Using Digital Image Processing. Plant Dis., 98, 1709-1716. http://dx.doi.org/10.1094/PDIS-03-14-0290-RE Billah, M., Amin, M. R., Hanifa, A., M, & Miah, M. B. A. (2015). Adaptive Neuro Fuzzy Inference System based Tea Leaf Disease Recognition using Color Wavelet Features. Communications on Applied Electronics, 3(5), 1-4. Boykov, Y., Veksler, Olga., & Zabih, R. (2001). Fast approximate energy minimization via graph cuts. IEEE Transactions on PAMI, 23(11), pp. 1222-1239. Camargo, A. & Smith, J. S. (2009a). An image-processing based algorithm to automatically identify plant disease visual symptoms. Biosyst. Eng., 102, 9-21. http://dx.doi.org/10.1016/j.biosystemseng.2008.09.030 Camargo, A. & Smith, J. S. (2009b). Image pattern classification for the identification of disease causing agents in plants. Comput. Electron. Agric., 66, 121-125. Chaudhary, P., Chaudhari, A. K., Cheeran, A. N. & Godara S. (2012). Color Transform Based Approach for Disease Spot Detection on Plant Leaf. Int. J. Comput. Sci. Telecomm, 3(6), 65-70. Chen, Z. M., & Chen, X. F. (1990). The diagnosis of tea diseases and their control [in Chinese] Shanghai. Shanghai Sci. Tech. Publ., 9, 73-88. Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Li., F. F. (2009). ImageNet: A Large-Scale Hierarchical Image Database. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Miami, FL, USA, pp. 248–255. Dey, A. K., Sharma, M., & Meshram, M. R. (2016). Image Processing Based Leaf Rot Disease, Detection of Betel Vine. Procedia Comput. Sci., 85, 748-754. Diniz, P. H. G. D., Pistonesi, M. F., Alvarez, M. B., Band, B. S. F., & de Araújo, M. C. U. (2015). Simplified tea classification based on a reduced chemical composition profile via successive projections algorithm linear discriminant analysis (SPA-LDA). J. Food Compos. Anal., 39, 103-110. Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (2009). The Pascal Visual Object Classes (VOC) Challenge. IJCV, 88(2), 303-338. http://dx.doi.org/10.1007/s11263-009-0275-4 Ferentinos, K. P. (2018). Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric., 145, 311-318. http://dx.doi.org/10.1016/j.compag.2018.01.009 Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. Proc. Conf. IEEE conference on computer vision and pattern recognition(CVPR), pp. 580-587. Girshick, R. (2015). Fast R-CNN. Proc. IEEE Int. Conf. computer vision, pp. 1440-1448. Hajiaghaalipour, F., Kanthimathi, MS, Sanusi, J, & Rajarajeswaran, J. (2015). White tea (Camellia sinensis) inhibits proliferation of the colon cancer cell line, HT-29, activates caspases and protects DNA of normal cells against oxidative damage. Food Chem., 169, 401-410. Hazarika, L. K., Bhuyan, M., & Hazarika, B. N. (2009). Insect Pests of Tea and Their Management. Annual Review of Entomology., 54, 267-284. Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I., Wojna, Z., Song, Y., Guadarrama, S., & Murphy, K. (2017). Speed/accuracy trade-offs for modern convolutional object detectors. Proc. Conf. IEEE conference on computer vision and pattern recognition(CVPR). Hughes, D. P., & Salathé, M. (2015). An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv:1511.08060 Ismail, M., & Mustikasari. (2013). Intelligent System for Tea Leaf Disease Detection. IPSJ SIG Technical Report. Jayme, G. A. B. (2017). A new automatic method for disease symptom segmentation in digital photographs of plant leaves. Eur. J. Plant Pathol.147, 349-364 Karmokar, B. C., Ullah, M. S., Siddiquee, M. K., & Alam, K. M. R. (2015). Tea Leaf Diseases Recognition using Neural Network Ensemble. International Journal of Computer Applications, 114(17), 27-30. Kharde, P. K. & Kulkarni, H. H. (2016). A Unique Technique for Grape Leaf Disease Detection. IJSRSET., 2(4), 343-348. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Proc. 2012 Conf. Neural information processing systems (NIPS), pp. 1097-1105. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proc. IEEE, 86(11), pp. 2278-2324. Lobet, G., Draye, X., & Périlleux, C. (2013). An online database for plant image analysis software tools. Plant Methods, 9(38), 1-7. Ma, J., Du, K., Zhang, L., Zheng, F., Chu, J., & Sun, Z. (2017). A segmentation method for greenhouse vegetable foliar disease spots images using color information and region growing. Comput. Electron. Agric., 142, 110-117. Mohanty, S. P., Hughes, D. P., & Salathe, M. (2016). Using Deep Learning for Image-Based Plant Disease Detection. Front Plant Sci, 7, 1419. http://dx.doi.org/10.3389/fpls.2016.01419 Nomura, S., Monobe, M., Ema, K., Matsunaga1, A., Maeda-Yamamoto, M., & Horie, H. (2015). Effects of flavonol-rich green tea (Camellia sinensis L. cv. Sofu) on blood glucose and insulin levels in diabetic mice. Integr. Obesity Diabetes, 1(5), 109-111. http://dx.doi.org/10.15761/IOD.1000125 Oerke, E. C. (2006). Crop losses to pests. J. Agric. Sci., 144, 31-43. Plataniotis, K. N., & Venetsanopoulos, A. N. (2000). Color Image Processing and Applications. Berlin Heidelberg: Springer-Verlag. Prasad, S., Peddoju, S. K. & Ghosh, D. (2014). Energy Efficient Mobile Vision System for Plant Leaf Disease Identification. 2014 IEEE Wireless Communications and Networking Conference. 4, pp. 3314-3319. Istanbul. Pydipati, R., Burks, T. F., & Lee, W. S. (2006). Identification of citrus disease using color texture features and discriminant analysis. Comput. Electron. Agric., 52, 49-59. http://dx.doi.org/10.1016/j.compag.2006.01.004 Radhakrishnan, B., & Baby, U. I. (2004). Economic threshold level for blister blight of tea. Indian Pytopathology, 57(2), 195–196. Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell., 39(6), 1137-1149. http://dx.doi.org/10.1109/TPAMI.2016.2577031 Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. Proc. Int. Conf. Learning Representations. Sinha, B. (2017). Tea Market. Retrieved from www.alliedmarketresearch.com/tea-market Tzutalin. LabelImg. Git code (2015). https://github.com/tzutalin/labelImg Ullagaddi, S. B. & Viswanadha Raju, S. (2017). Automatic Robust Segmentation Scheme for Pathological Problems in Mango Crop. Modern Education and Computer Science, 9(1), 43-51. http://dx.doi.org/10.5815/ijmecs.2017.01.05 Wang, G., Sun, Y., & Wang, J. (2017). Automatic Image-Based Plant Disease Severity Estimation Using Deep Learning. Comput. Intell. Neurosci., 2017. pp. 1-8. http://dx.doi.org/10.1155/2017/2917536 Fujita, E., Kawasaki, Y., Uga, H., Kagiwada, S., & Iyatomi, H. (2016). Basic investigation on a robust and practical plant diagnostic system. 15th IEEE International Conference on Machine Learning and Applications. http://dx.doi.org/10.1109/ICMLA.2016.0178 Zhang, S., Wu, X., You, Z., & Zhang, L. (2017a). Leaf image based cucumber disease recognition using sparse representation classification. Comput. Electron. Agric., 134, 135-141. http://dx.doi.org/10.1016/j.compag.2017.01.014 Zhang, S., You, Z., & Wu, X. (2017b). Plant disease leaf image segmentation based on superpixel clustering and EM algorithm. Neural Comput.Appl. pp. 1-8. Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. Proc. 13th ECCV, pp. 818-833. Zurich, Switzerland. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71929 | - |
| dc.description.abstract | 茶葉病蟲害會對茶樹的生長造成危害,此不利的條件會導致茶樹枯萎進而影響茶的產量及利潤。若能在早期發現,農民即可做出適當的病蟲害管理,並控制病蟲害的災情來降低產量的損失。本研究在台灣中部及北部收集了1842張茶葉病蟲害之影像來建構影像資料庫。其中1429張影像被用來訓練一個能辨識不同病蟲害之更快速區域卷積神經網路(Faster-RCNN)模型,並選用VGG16為卷積模型。此模型能辨識赤葉枯病、茶餅病、藻斑病等三種病害,及斑潛蠅、薊馬、茶捲葉蛾、茶姬捲葉蛾、盲椿象等五種蟲害,並針對赤葉枯病和茶餅病進行危害面積比例的計算。在413張測試的影像當中,選用兩個評估參數,交集與聯集比 (Intersection over Union) 與信心值(Confidence Score)。當兩個參數分別被設定為0.5及0.05時,可以得出精確率(Precision)、召回率(Recall)、平均精確率(Mean Average Precision, mAP)為70.9%、80.0%、75.1%,並適合進行手動的病蟲害偵測。其中茶餅病和斑潛蠅的精確率高達了84.25%和94.35%。當信心值提升到0.5時,精確率、召回率、平均精確率變為83.1%、70.9%、66.9%,並適合運用在自動化的即時監測。在評估面積計算的部分,赤葉枯病、茶餅病、葉片的影像分割的準確率達到了88.46%、91.09%、88.03%。此一田間茶葉病蟲害判別模型的開發,可作為協助茶農進行即時監測、判讀病蟲害的發生狀態的便利輔助工具。 | zh_TW |
| dc.description.abstract | Tea (Camellia sinensis (L.) O. Kuntze) leaf lesions are detrimental to the growth of tea crops. The adverse events result in illness of tea leaves and causes direct reduction in yield and profit. Thereby, early detection or on-site monitoring of tea tree lesions can provide effective Integrated Pest Management (IPM) strategies to control the infected area and prevent further yield decreasing. In this study, 1842 lesion images were collected from northern and middle Taiwan to build the image database. From the database, 1429 images of tea leaves were used to train the model based on faster region-based convolutional neural network (Faster R-CNN) with VGG16 as the backbone model. The proposed model classifies three types of tea diseases: brown blight, blister blight, algal leaf spot and five types of insect pests: leaf miner, tea thrips, tea leaf roller, small tea tortrix, tea mosquito bug and calculate the area proportion of brown and blister blight. When the setting of two evaluation components, Intersection over Union (IoU) and confidence score, were set as 0.5 and 0.05, the results of 413 testing images obtained a precision, recall and mean average precision (mAP) of 70.9%, 80.0% and 75.1%, respectively. In this case it is more suitable for manual detection. In addition, the AP of blister blight and leaf miner reached up to 84.25% and 94.35%. When the confidence score was changed to 0.5, the precision, recall and mAP were 83.1%, 70.9% and 66.9%, respectively and could be applied for automatic real time detection. In the evaluation of area calculation, the accuracy for brown blight, blister blight and leaf segmentation were 88.46%, 91.09%, and 88.03%, respectively. The developed tea lesion classification model provides tea farmers a convenient tool for real time monitoring in the occurrence of tea field lesions. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:15:22Z (GMT). No. of bitstreams: 1 ntu-107-R05631021-1.pdf: 4906018 bytes, checksum: 35349014929e8f5bdcddd4f32b5fef2d (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENT i
摘要 ii ABSTRACT iii TABLE OF CONTENTS v LIST OF TABLES vii LIST OF FIGURES viii ABBREVIATIONS x CHAPTER 1. INTRODUCTION 1 1.1 General Background of Tea 1 1.2 Research Purpose 2 1.3 Research objectives 3 CHAPTER 2. LITERATURE REVIEW 5 2.1 Overview of Tea Pests and Diseases 5 2.1.1 Tea Pests 5 2.1.2 Tea Diseases 9 2.2 Conventional Image Processing Algorithm for Leaf Diseases Detection 11 2.2.1 Plant Leaf Diseases Detection 12 2.2.2 Tea Leaf Diseases Detection 17 2.3 Deep Learning 18 2.3.1 Artificial Neural Networks (ANN) 19 2.3.2 Deep Convolutional Neural Networks (DCNN) 22 2.3.2.1 Convolutional Layer 22 2.3.2.2 Pooling Layer 24 2.3.2.3 Fully-connected Layer 25 2.3.2.4 Softmax Layer 25 2.3.3 CNN Architectures 26 2.3.4 Modern convolutional object detectors 27 2.3.4.1 Regions with CNN Features (R-CNN) 27 2.3.4.2 Fast R-CNN 28 2.3.5 Deep Learning in Plant Disease Detection 29 CHAPTER 3. MATERIALS AND METHODS 31 3.1 Experiment Design 31 3.2 Image Acquisition and Equipment 31 3.3 Data Annotation 32 3.4 Faster R-CNN (FR-CNN) 37 3.4.1 Region proposal network (RPN) 40 3.4.2 ROI Pooling 43 3.4.3 Fast R-CNN 43 3.5 Approximate Lesion Area Calculation 44 CHAPTER 4. RESULTS AND DISCUSSION 47 4.1 Evaluation of Faster R-CNN Model 47 4.1.1 Correctly Classified Images 50 4.1.2 Misclassified Images 56 4.2 Comparison of Two Different Confidence Scores 60 4.3 Results of algal leaf spot under different labeling methods 62 4.4 Performance of Approximate Lesion Area Calculation 63 CHAPTER 5. CONCLUSION 66 REFERENCES 68 | |
| dc.language.iso | en | |
| dc.subject | 物體辨識 | zh_TW |
| dc.subject | 更快速區域卷積神經網路 | zh_TW |
| dc.subject | 病害 | zh_TW |
| dc.subject | 蟲害 | zh_TW |
| dc.subject | tea diseases | en |
| dc.subject | object detection | en |
| dc.subject | Faster R-CNN | en |
| dc.subject | insect pests | en |
| dc.title | 應用卷積神經網路於田間茶葉病蟲害影像之分類 | zh_TW |
| dc.title | Classification of Tea Leaf Lesions on Field Images Using Convolutional Neural Network | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳右人,郭彥甫,劉天麟,林秀橤 | |
| dc.subject.keyword | 更快速區域卷積神經網路,物體辨識,病害,蟲害, | zh_TW |
| dc.subject.keyword | Faster R-CNN,object detection,tea diseases,insect pests, | en |
| dc.relation.page | 71 | |
| dc.identifier.doi | 10.6342/NTU201803799 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-20 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 4.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
