請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71896完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧彥文(Yen-Wen Lu) | |
| dc.contributor.author | Jia-Hong Liu | en |
| dc.contributor.author | 劉家宏 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:13:58Z | - |
| dc.date.available | 2019-10-02 | |
| dc.date.copyright | 2018-10-02 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-09-25 | |
| dc.identifier.citation | Asbury, C. L. (2005). Kinesin: world's tiniest biped. Curr Opin Cell Biol, 17(1), 89-97. doi:10.1016/j.ceb.2004.12.002
Bhabha, G., Johnson, G. T., Schroeder, C. M., & Vale, R. D. (2016). How Dynein Moves Along Microtubules. Trends Biochem Sci, 41(1), 94-105. doi:http://dx.doi.org/10.1016/j.tibs.2015.11.004 Cash, A. D., Aliev, G., Siedlak, S. L., Nunomura, A., Fujioka, H., Zhu, X., . . . Perry, G. (2003). Microtubule Reduction in Alzheimer's Disease and Aging Is Independent of τ Filament Formation. The American Journal of Pathology, 162(5), 1623-1627. doi:10.1016/s0002-9440(10)64296-4 Castoldi, M., & Popov, A. V. (2003). Purification of brain tubulin through two cycles of polymerization–depolymerization in a high-molarity buffer. Protein Expression and Purification, 32(1), 83-88. doi:10.1016/s1046-5928(03)00218-3 Caudron, N., Arnal, I., Buhler, E., Job, D., & Valiron, O. (2002). Microtubule nucleation from stable tubulin oligomers. Journal of Biological Chemistry, 277(52), 50973-50979. doi:10.1074/jbc.M209753200 Chung, C. Y., Funamoto, S., & Firtel, R. A. (2001). Signaling pathways controlling cell polarity and chemotaxis. Trends Biochem Sci, 26(9), 557-566. doi:http://dx.doi.org/10.1016/S0968-0004(01)01934-X Coy, D. L., Wagenbach, M., & Howard, J. (1999). Kinesin Takes One 8-nm Step for Each ATP That It Hydrolyzes. Journal of Biological Chemistry, 274(6), 3667-3671. Dujovne, I., van den Heuvel, M., Shen, Y., de Graaff, M., & Dekker, C. (2008). Velocity Modulation of Microtubules in Electric Fields. Nano Letters, 8(12), 4217-4220. Elsevier. (2014). Discovery of quantum vibrations in 'microtubules' inside brain neurons supports controversial theory of consciousness. from ScienceDaily Fujita, H. (2009). MEMS Development in a Past Decade and its Future Prospects. IEEJ Transactions on Sensors and Micromachines, 117(8), 401-406. Hardin, J., Bertoni, G., & Kileinsmith, L. J. (2011). Becker's World of the Cell. Indiana, USA: PEARSON. Hiratsuka, Y., Tada, T., Oiwa, K., Kanayama, T., & Uyeda, T. Q. (2001). Controlling the Direction of Kinesin-Driven Microtubule Movements along Microlithographic Tracks. Biophysical journal, 81, 1555-1561. Hirst, L. S., Parker, E. R., Abu-Samah, Z., Li, Y., Pynn, R., MacDonald, N. C., & Safinya, C. R. (2005). Microchannel systems in titanium and silicon for structural and mechanical studies of aligned protein self-assemblies. Langmuir, 21(9), 3910-3914. Hotani, H., & Horio, T. (1988). Dynamics of Microscopy: Microtubules Visualized by Darkfield Treadmilling and Dynamic Instability. Cytoskeleton, 10(1-2), 229-236. Howard, J., & Hyman, A. A. (2009). Growth, fluctuation and switching at microtubule plus ends. Nat Rev Mol Cell Biol, 10(8), 569-574. doi:10.1038/nrm2713 Hutchins, B. M., Platt, M., Hancock, W. O., & Williams, M. E. (2007). Directing transport of CoFe2O4-functionalized microtubules with magnetic fields. Small, 3(1), 126-131. doi:10.1002/smll.200600410 Hyman, A. A., Salser, S., Drechsel, D. N., Unwin, N., & Mitchison, T. J. (1992). Role of GTP Hydrolysis in Microtubule Dynamics: Information from a Slowly Hydrolyzable Analogue, GMPCPP. Molecular biology of the cell, 3(10), 1155-1167. Kakugo, A., Tamura, Y., Shikinaka, K., Yoshida, M., Kawamura, R., Furukawa, H., & Gong, J. P. (2009). Formation of Well-Oriented Microtubules with Preferential Polarity in a Confined Space under a Temperature Gradient. Journal of the American Chemical Society, 131(50), 18089-18095. Kapitein, L. C., & Hoogenraad, C. C. (2015). Building the Neuronal Microtubule Cytoskeleton. Neuron, 87(3), 492-506. doi:10.1016/j.neuron.2015.05.046 Khataee, H. R., & Khataee, A. R. (2009). Applications of molecular motors in intelligent nanosystems. Dig. J. Nanomater. Bios, 4(4), 613-621. Kim, T., Kao, M. T., Hasselbrink, E. F., & Meyhöfer, E. (2007). Active alignment of microtubules with electric fields. Nano Letters, 7(1), 211-217. Lin, C. T., Kao, M. T., Kurabayashi, K., & Meyhöfer, E. (2006). Efficient designs for powering microscale devices with nanoscale biomolecular motors. Small, 2(2), 281-287. Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., & Darnell, J. (2000). Protein glycosylation in the ER and Golgi complex. Millecamps, S., & Julien, J. P. (2013). Axonal transport deficits and neurodegenerative diseases. Nat Rev Neurosci, 14(3), 161-176. doi:10.1038/nrn3380 Mitchison, T. (1984). dynamic instability of microtubule growth. nature, 312, 237-242. Partnership, P. F. (2002). Prime Faraday Technology Watch. UK: PRIME Faraday Partnership. Rezakhaniha, R., Agianniotis, A., Schrauwen, J., Griffa, A., Sage, D., Bouten, C., . . . Stergiopulos, N. (2012). Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomechanics and modeling in mechanobiology, 11(3-4), 461-473. Rogers, S. L. (2014). Short‐circuiting microtubule plus and minus end proteins in spindle positioning. The EMBO journal, 33(2), 96-98. Russ, J. C., & Woods, R. P. (1995). Book Review. The Image Processing Handbook. Journal of Computer Assisted Tomography, 19(6), 979-981. Sander, E., A, Stein, A., M, Swickrath, M., J, & Barocas, V., H. (2010). Out of many, one: Modeling schemes for biopolymer and biofibril networks Trends in Computational Nanomechanics (pp. 557-602): Springer. Strelnikova, N., Herren, F., Schoenenberger, C.-A., & Pfohl, T. (2016). Formation of Actin Networks in Microfluidic Concentration Gradients. Frontiers in Materials, 3. doi:10.3389/fmats.2016.00020 Vale, R. D. (2003). The Molecular Motor Toolbox for Intracellular Transport. Cell, 112(4), 467-480. doi:https://doi.org/10.1016/S0092-8674(03)00111-9 Verhey, K. J., & Hammond, J. W. (2009). Traffic control: regulation of kinesin motors. Nat Rev Mol Cell Biol, 10(11), 765-777. doi:10.1038/nrm2782 Verma, V., Hancock, W. O., & Catchmark, J. M. (2008). The role of casein in supporting the operation of surface bound kinesin. J Biol Eng, 2, 14. doi:10.1186/1754-1611-2-14 Walker, R. A., O'Brien, E. T., Pryer, N. K., Soboeiro, M. F., Voter, W. A., Erickson, H. P., & Salmon, E. D. (1988). Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. The Journal of cell biology, 107(4), 1437-1448. doi:10.1083/jcb.107.4.1437 Walleczek, J. (2006). Self-organized biological dynamics and nonlinear control: toward understanding complexity, chaos and emergent function in living systems. UK: Cambridge University Press. Weatherbee, J. A., Luftig, R. B., & Weihing, R. R. (1978). In vitro polymerization of microtubules from HeLa cells. The Journal of cell biology, 78(1), 47-57. Yokokawa, R., Takeuchi, S., Kon, T., Nishiura, M., Sutoh, K., & Fujita, H. (2004). Unidirectional Transport of Kinesin-Coated Beads on Microtubules Oriented in a Microfluidic Device. Nano letters, 4(11), 2265-2270. 楠田周., 朴ちょんほ, 柳田保子., & 初澤毅. (2015). 温度応答性高分子を用いたキネシン・微小管系の往復運動デバイスの作製. 精密工学会学術講演会講演論文集, 813-814. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71896 | - |
| dc.description.abstract | 微管(MTs, or microtubules)在溫度梯度場下往單一方向進行聚合反應,這種環境與微管在軸突中的形成相似。因此,為了模擬這樣的環境,我們發展了一種具有加熱器、可以產生線性溫度梯度的微流體平台,這平台可以促使微管在晶片上進行聚合反應,並且控制其聚合方向。在實驗中,我們發現了微管在溫度梯度場中可以成功的聚合並整齊排列。同時,為了量化MT的排列情形,我們利用了以結構張量(structure tensor)的圖像處理技術。結果說明,在溫度梯度場下,微管排列集中在31.2度內的區間。相對應的,在均勻溫度場下,微管則廣泛分佈,較無方向性。 此外,我們研究在兩種不同的微管蛋白濃度下,微管的聚合情形與排列情況發現了,在高濃度環境下的微管聚合比在低濃度環境下的微管聚合,由於有較為足夠的微管蛋白濃度,微管聚合有著範圍較長的排列的距離。 | zh_TW |
| dc.description.abstract | Microtubules (MTs) were unidirectionally polymerized under a temperature gradient field - an environment which was similar to their formation in axon. We proposed a microfluidic platform with a triangular heater to generate a linear temperature gradient for on-chip MT polymerization. It was found that the MTs were polymerized and neatly aligned in the temperature gradient field. To quantify the alignment of MTs, an image processing technique based on structure-tensor were utilized. The results showed the MTs under the temperature gradient field had a better alignment within 31.2 degrees, whereas the MT under the uniform temperature field widely dispersed. Further, the MT polymerization and alignments at two different tubulin concentrations were examined. The MT polymerized at the higher concentration was aligned for a longer distance than the one at the lower concentration due to the sufficient tubulin concentration. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:13:58Z (GMT). No. of bitstreams: 1 ntu-107-R04631014-1.pdf: 4425732 bytes, checksum: 906f1f2eaaf7e0e52962a87d3ae76381 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 iii Abstract iv Table of Contents v List of Figure ix List of Table xvi Chapter 1 Introduction 1 1.1 Microtubule 2 1.2 Motor Proteins-Kinesin 3 1.3 MEMs Technology 4 1.4 Overall Structure of Thesis 5 Chapter 2 Literature Review 6 2.1 Microtubule Assembly and Organization 6 2.2 Motor Protein Kinesin 9 2.3 Kinesin Coating on Substrate 10 2.4 Motor Protein Kinesin Motility 12 2.5 Method for Controlling Direction 12 2.6 Aligned Protein Self-Assemblies 14 2.7 Tubulin Polymerization in Temperature Gradient 15 2.8 Microfluidic Concentration Gradients 16 Chapter 3 Materials and Methods 18 3.1 Principle of Alignment Polymerization 18 3.2 Design and Fabrication of Heating Chip 21 3.2.1 Design of Temperature Gradient heater 21 3.2.2 Fabrication of the Triangular Heater by ITO Glass 23 3.3 Heating Chip and Temperature Control Method 26 3.4 Tubulin Reagent Preparation 28 3.4.1 Tubulin Protein 28 3.4.2 Fluorescence-Labeled Tubulin 28 3.4.3 Tubulin Reagent Allocation 28 3.5 Experiment Setup 29 3.6 Microscopy and Observation Method 31 3.7 MTs Alignment Angle Analysis 32 Chapter 4 Result 34 4.1 The Performance of Heating Chip 34 4.1.1 The Performance of Triangular Heater 34 4.1.2 Thermal Gradient Calibration and Control 35 4.2 The Visualization of Microtubules 38 4.2.1 Centrifugal before Polymerization 39 4.2.2 Fluorescence-Labeled Tubulin: Unlabeled-Tubulin Ratio 41 4.2.3 GMPCPP Concentration 43 4.3 Polymerization Results Comparison in Uniform Temperature and Temperature Gradient 45 4.4 The Alignment Situation of MTs in the Temperature Gradient 51 4.4.1 MTs Polymerization in Gradient Temperature 39°C-34°C at Low Concentration 51 4.4.2 The Reason of Low MTs Density in Low Temperature Region 54 4.4.3 MTs Polymerization in Gradient Temperature 39°C-34°C at High Concentration 56 Chapter 5 Discussion 59 5.1 The Degree of MTs Alignment in a Temperature Gradient 59 5.2 The Density of MT Degraded in Temperature Gradient Field 60 5.3 Application of this Polymerization Method 61 5.4 Limitation of Analytical Technology 62 Chapter 6 Conclusion and Prospect 64 6.1 Conclusion 64 6.2 Prospect 65 Appendix I 67 Appendix II 68 Appendix III 70 Appendix IV 71 Reference 72 | |
| dc.language.iso | en | |
| dc.subject | 溫度梯度 | zh_TW |
| dc.subject | 微管 | zh_TW |
| dc.subject | 對準 | zh_TW |
| dc.subject | 纖維排列 | zh_TW |
| dc.subject | microtubule | en |
| dc.subject | temperature gradient | en |
| dc.subject | alignment | en |
| dc.subject | triangular heater | en |
| dc.title | 利用溫度梯度晶片系統構築微管聚合 | zh_TW |
| dc.title | Microtubule Polymerization Controlled by Temperature Gradient on a Microchip. | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 侯詠德(Yung-Te Hou),夏國強(Kuo-Chiang Hsia) | |
| dc.subject.keyword | 微管,溫度梯度,對準,纖維排列, | zh_TW |
| dc.subject.keyword | microtubule,temperature gradient,alignment,triangular heater, | en |
| dc.relation.page | 74 | |
| dc.identifier.doi | 10.6342/NTU201804141 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-09-26 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 4.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
