Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71886
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊志忠(Chih-Chung Yang)
dc.contributor.authorCheng-Che Hsiehen
dc.contributor.author謝承哲zh_TW
dc.date.accessioned2021-06-17T06:13:34Z-
dc.date.available2018-10-02
dc.date.copyright2018-10-02
dc.date.issued2018
dc.date.submitted2018-09-27
dc.identifier.citationReferences
[1] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[2] D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. C. Fujimoto, “Three-dimensional endomicroscophy using optical coherence tomography,” Nature Photonics 1, 709-716 (2007).
[3] S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953-2963 (2003).
[4] B. Cense, N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “High-speed optical frequency-domain imaging,” Opt. Express 12, 2435-2447 (2004).
[5] R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225-3237 (2006).
[6] R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines⁄s,” Opt. Lett. 31, 2975-2977 (2006).
[7] M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 326-332 (1995).
[8] J. S. Schuman, P. K. Tamar, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103, 1889-1898 (1996).
[9] M. R. Hee, C. A. Puliafito, J.S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J.S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Topography of diabetic macular edema with optical coherence tomography,” Ophthalmology 105, 360-370 (1998).
[10] W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 501-507 (2001).
[11] J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Disease, 2nd edn. (Slack Inc., Thorofare, NJ, 2004).
[12] B. H. Park, C. Saxer, S.M. Srinivas, J.S. Nelson, and J.F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474-479 (2001).
[13] S. Jiao, W. Yu, G. Stoica, and L.V. Wang, “Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging,” Appl. Opt. 42, 5191-5197 (2003).
[14] S. M. Srinivas, J. F. D. Boer, and H. Park, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9, 207-212 (2004).
[15] G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, S. A. Boppart, and J. G. Fujimoto, “Optical biopsy in human gastrointestinal tissue using optical coherence tomography,” Am. J. Gastroenterol. 92, 1800-1804 (1997).
[16] M. V. Sivak, K. Kobayashi, J.A. Izatt, et al., “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointest Endosc. 51, 474-479 (2000).
[17] A. R. Tumlinson, B. Povazay, L. P. Hariri, et al., “In vivo ultrahigh-resolution optical coherence tomography of mouse colon with an achromatized endoscope,” J. Biomed. Opt. 11, 064003 (2006).
[18] Y. Yang, S. Whiteman, D. Gey van Pittius, Y. He, R. K. Wang, and M. A. Spiteri, “Use of optical coherence tomography in delineating airways microstructure: comparison of OCT images to histopathological sections,” Phys. Med. Biol. 49, 1247-1255 (2004).
[19] N. Hanna, D. Saltzman, D. Mukai, et al., “Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura,” J. Thorac Cardiovasc Surg. 129, 615-622 (2005).
[20] M. Tsuboi, A. Hayashi, N. Ikeda, et al., “Optical coherence tomography in the diagnosis of bronchial lesions,” Lung Cancer 56, 387-394 (2005).
[21] S. C. Whiteman, Y. Yang, D. Gey van Pittius, M. Stephens, J. Parmer, and M. A. Spiteri, “Optical coherence tomography: real-time imaging of bronchial airways microstructure and detection of inflammatory/neoplastic morphologic changes,” Clin. Cancer Res. 12, 813-818 (2006).
[22] M. E. Brezinski, G. J. Tearney, N. J. Weissman, et al., “Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound,” Heart 77, 397-403 (1997).
[23] J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82, 128-133 (1999).
[24] H. Kitabata, T. Kubo, and T. Akasaka, “Identification of multiple plaque ruptures by optical coherence tomography in a patient with acute myocardial infarction: a three-vessel study,” Heart 94, 544 (2008).
[25] B. Wong, R. Jackson, S. Guo S, et al., “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” The Laryngoscope 115, 1904-1911 (2005).
[26] X. J. Wang, T. E. Milner, and J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20, 1337-1339 (1995).
[27] Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119-1121 (1997).
[28] J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934-936 (1997).
[29] G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24, 537-539 (1999).
[30] U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111-113 (2000)
[31] J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Differential absorption imaging with optical coherence tomography,” J. Opt. Soc. Am. A 15, 2288-2296 (1998)
[32] C. Zhou, T. H. Tsai, D. C. Adler, H. C. Lee, D. W. Cohen, A. Mondelblatt, Y. Wang, J. L. Connolly, and J. G. Fujimoto, “Photothermal optical coherence tomography in ex vivo human breast tissues using gold nanoshells,” Opt. Lett. 35, 700-702 (2010).
[33] R. V. Kuranov, S. Kazmi, A. B. McElroy, J. W. Kiel, A. K. Dunn, T. E. Milner, and T. Q. Duong, “In vivo depth-resolved oxygen saturation by dual-wavelength photothermal (DWP) OCT,” Opt. Express 19, 23831-23844 (2010).
[34] R. M. Sutherland, “Cell and Environment Interactions in Tumor Microregions: The Multicell Spheroid Model,” Science 240, 177-184 (1988).
[35] F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A. Kunz-Schughart, “Multicellular tumor spheroids: An underestimated tool is catching up again,” J. Biotechnol. 148, 3-15 (2010).
[36] R. Edmondson, J. J. Broglie, A. F. Adcock, and L. J. Yang, LJ, “Three-Dimensional Cell Culture Systems and Their Applications in Drug Discovery and Cell-Based Biosensors,” Assay Drug Dev. Technol. 12, 207-218 (2014).
[37] M. P. Carvalho, E. C. Costa, S. P. Miguel, and I. J. Correia, “Tumor spheroid assembly on hyaluronic acid-based structures: A review,” Carbohydr. Polym. 150, 139-148 (2016).
[38] J. Friedrich, C. Seidel, R. Ebner, and L. A. Kunz-Schughart, “Spheroid-based drug screen: considerations and practical approach,” Nat. Protoc. 4, 309-324 (2009).
[39] T. R. Sodunkea, K. K. Turnerb, S. A. Caldwellb, K. W. McBridec, M. J. Reginato, and H. M. Noh, “Micropatterns of Matrigel for three-dimensional epithelial cultures,” Biomaterials 28, 4006-4016 (2007).
[40] G. M. Keller, “In vitro differentiation of embryonic stem cells,” Curr. Opin. Cell Biol. 7, 862-869 (1995).
[41] Y. C. Tung, A. Y. Hsiao, S. G. Allen, Y. S. Torisawa, M. Ho, and S. Takayama, “High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array,” Analyst 136, 473-478 (2011).
[42] Y. T. Phung, D. Barbone, V. C. Broaddus, and M. Ho, “Rapid Generation of In Vitro Multicellular Spheroids for the Study of Monoclonal Antibody Therapy,” J. Cancer 2, 507-514 (2011).
[43] S. Nath, and G. R. Devi, “Three-dimensional culture systems in cancer research: Focus on tumor spheroid model,” Pharmacol. Ther. 163, 94-108 (2016).
[44] X. Cui, Y. Hartanto, and H. Zhang, “Advances in multicellular spheroids formation,” J. R. Soc. Interface 14, 20160877 (2017).
[45] N. Gupta, J. R. Liu, B. Patel, D. E. Solomon, B. Vaidya, and V. Gupta “Microfluidics‐based 3D cell culture models: Utility in novel drug discovery and delivery research,” Bioeng. Transl. Med. 1, 63-81 (2016).
[46] R. K. Vadivelu, H. Kamble, M. J. A. Shiddiky, and N. T. Nguyen, “Microfluidic Technology for the Generation of Cell Spheroids and Their Applications,” Micromachines 8, 94 (2017).
[47] F. van Roy, and G. Berx, “The cell-cell adhesion molecule E-cadherin,” Cell. Mol. Life Sci. 65, 3756-3788 (2008).
[48] J. Friedrich, R. Ebner, and L. A. Kunz-Schughart, “Experimental anti-tumor therapy in 3-D: Spheroids – old hat or new challenge?,” Int. J. Radiat. Biol, 83, 849-871 (2007).
[49] A. Kang, H. I. Seo, B. G. Chung, and S. H. Lee, “Concave microwell array-mediated three-dimensional tumor model for screening anticancer drug-loaded nanoparticles,’’ Nanomed.-Nanotechnol, Biol. Med. 11, 1153-1161 (2015).
[50] H. L. Ma, Q. Jiang, S. Y. Han, Y. Wu, J. C. Tomshine, D. L. Wang, Y. L. Gan, G. Z. Zou, and X. J. Liang, “Multicellular Tumor Spheroids as an In Vivo–Like Tumor Model for Three-Dimensional Imaging of Chemotherapeutic and Nano Material Cellular Penetration,’’ Mol. Imaging 11, 487-498 (2012).
[51] Y. Gao, M. G. Li, B. Chen, Z. C. Shen, P. Guo, M. Guillaume Wientjes, and J. L. S. Au, “Predictive models of diffusive nanoparticle transport in 3-dimensional tumor cell spheroids,” AAPS J. 15, 816-831 (2013).
[52] J. C. Zhao, H. X. Lu, S. Wong, M. X. Lu, P. Xiao, and M. H. Stenzel, “Influence of nanoparticle shapes on cellular uptake of paclitaxel loaded nanoparticles in 2D and 3D cancer models,’’ Polym. Chem. 8, 3317-3326 (2017).
[53] K. M. Scherer, R. H. Bisby, S. W. Botchway, J. A. Hadfield, J. W. Haycock, and A. W. Parker, “Three-dimensional imaging and uptake of the anticancer drug combretastatin in cell spheroids and photoisomerization in gels with multiphoton excitation,” J. Biomed. Opt. 20, 078003 (2015).
[54] H. N. Nguyen, P. T. Ha, A. S. Nguyen, D. T. Nguyen, H. D. Do, Q. N. Thi, and M. N. H. Thi, “Curcumin as fluorescent probe for directly monitoring in vitro uptake of curcumin combined paclitaxel loaded PLA-TPGS nanoparticles,” Adv. Nat. Sci.-Nanosci. Nanotechnol. 7, 025001 (2016).
[55] T. D. Rane, and A. M. Armani, “Two-Photon Microscopy Analysis of Gold Nanoparticle Uptake in 3D Cell Spheroids,” PLoS ONE 11, e0167548 (2016).
[56] W. Rao, H. Wang, J. F. Han, S. T. Zhao, J. Dumbleton, P. Agarwal, W. J. Zhang, G. Zhao, J. H. Yu, D. L. Zynger, X. B. Lu, and X. M. He, “Chitosan-Decorated Doxorubicin-Encapsulated Nanoparticle Targets and Eliminates Tumor Reinitiating Cancer Stem-like Cells,” ACS Nano 9, 5725-5740 (2015).
[57] K. Y. Huang, H. L. Ma, J. Liu, S. D. Huo, A. Kumar, T. Wei, X. Zhang, S. B. Jin, Y. L. Gan, P. C. Wang, S. T. He, X. N. Zhang, and X. J. Liang, “Size-Dependent Localization and Penetration of Ultrasmall Gold Nanoparticles in Cancer Cells, Multicellular Spheroids, and Tumors in Vivo” ACS Nano 6, 4483-4493 (2012).
[58] S. D. Huo, H. L. Ma, K. Y. Huang, J. Liu, T. Wei, S. B. Jin, J. C. Zhang, S. T. He, and X. J. Liang, “Superior penetration and retention behavior of 50 nm gold nanoparticles in tumors,” Cancer Res. 73, 319-330 (2013).
[59] D. Chen, B. W. Li, S. H. Cai, P. Wang, S. W. Peng, Y. Z. Sheng, Y. Y. He, Y. Q. Gu, and H. Y. Chen, “Dual targeting luminescent gold nanoclusters for tumor imaging and deep tissue therapy,” Biomaterials 100, 1-16 (2016).
[60] E. Gaio, D. Scheglmann, E. Reddi, and F. Moret, “Uptake and photo-toxicity of Foscan®, Foslip® and Fospeg® in multicellular tumor spheroids,” J. Photochem. Photobiol. B-Biol. 161, 244-252 (2016).
[61] J. P. Celli, I. Rizvi, C. L. Evans, A. O. Abu-Yousif, and T. Hasan, “Quantitative imaging reveals heterogeneous growth dynamics and treatment-dependent residual tumor distributions in a three-dimensional ovarian cancer model,” J. Biomed. Opt. 15, 051603 (2010).
[62] C. L. Evans, “Three-dimensional in vitro cancer spheroid models for photodynamic therapy: strengths and opportunities,” Front. Physics 3, 15 (2015).
[63] S. L. Manoto, N. N. Houreld, and H. Abrahamse, “Resistance of Lung Cancer Cells Grown as Multicellular Tumour Spheroids to Zinc Sulfophthalocyanine Photosensitization,” Int. J. Mol. Sci. 16, 10185-10200 (2015).
[64] J. P. Celli, I. Rizvi, A. R. Blanden, I. Massodi, M. D. Glidden, B. W. Pogue, and T. Hasan, “An imaging-based platform for high-content, quantitative evaluation of therapeutic response in 3D tumour models,” Sci. Rep. 4, 3751 (2014).
[65] M. D. Glidden, J. P. Celli, I. Massodi, I. Rizvi, B. W. Pogue, and T. Hasan, “Image-Based Quantification of Benzoporphyrin Derivative Uptake, Localization, and Photobleaching in 3D Tumor Models, for Optimization of PDT Parameters,” Theranostics 2, 827-839 (2012).
[66] S. Marchal, A. Fadloun, E. Maugain, M. A. D’Hallewin, F. Guillemin, and L. Bezdetnaya, “Necrotic and apoptotic features of cell death in response to Foscan® photosensitization of HT29 monolayer and multicell spheroids,” Biochem. Pharmacol. 69, 1167-1176 (2005).
[67] T. H. Foster, D. F. Hartley, M. G. Nichols, and R. Hilf, “Fluence Rate Effects in Photodynamic Therapy of Multicell Tumor Spheroids,” Cancer Res. 53, 1249-1254 (1993).
[68] P. Y. Zhang, J. Q. Wang, H. Y. Huang, K. Q. Qiu, J. J. Huang, L. N. Ji, and H. Chao, “Enhancing the photothermal stability and photothermal efficacy of AuNRs and AuNTs by grafting with Ru(II) complexes,” J. Mat. Chem. B 5, 671-678 (2017).
[69] D. R. Dias, A. F. Moreira, and I. J. Correia, “The effect of the shape of gold core–mesoporous silica shell nanoparticles on the cellular behavior and tumor spheroid penetration,” J. Mat. Chem. B 4, 7630-7640 (2016).
[70] C. Iodice, A. Cervadoro, A. L. Palange, J. Key, S. Aryal, M.R. Ramirez, C. Mattu, G. Ciardelli, B. E. O'Neill, and P. Decuzzi, “Enhancing photothermal cancer therapy by clustering gold nanoparticles into spherical polymeric nanoconstructs,” Opt. Lasers Eng. 76, 74-81 (2016).
[71] S. J. Madsen, S. K. Baek, A. R. Makkouk, T. Krasieva, and H. Hirschberg, “Macrophages as Cell-Based Delivery Systems for Nanoshells in Photothermal Therapy,” Ann. Biomed. Eng. 40, 507-515 (2012).
[72] L. Dykman, and N. Khlebtsov, “Gold nanoparticles in biomedical applications: recent advances and perspectives,” Chem. Soc. Rev. 41, 2256-2282 (2012).
[73] E. Boisselier, and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chem. Soc. Rev. 38, 1759-1782 (2009).
[74] C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging,” Accounts Chem. Res. 41, 1721-1730 (2008).
[75] E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, “Gold Nanoparticles Are Taken Up by Human Cells but Do Not Cause Acute Cytotoxicity,” Small 1, 325-327 (2005).
[76] X. D. Zhang, D. Wu, X. Shen, P. X. Liu, N. Yang, B. Zhao, H. Zhang, Y. M. Sun, L. A. Zhang, and F. Y. Fan, “Size-dependent in vivo toxicity of PEG-coated gold nanoparticles,” Int. J. Nanomed. 6, 2071-2081 (2011).
[77] W. S. Cho, M. J. Cho, J. Jeong, M. Choi, H. Y. Cho, B. S. Han, S. H. Kim, H. O. Kim, Y. T. Lim, B. H. Chung, and J. Jeong, “Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles,” Toxicol. Appl. Pharmacol. 236, 16-24 (2009).
[78] E. B. Dickerson, E. C. Dreaden, X. H. Huang, I. H. El-Sayed, H. H. Chu, S. Pushpanketh, J. F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269, 57-66 (2008).
[79] S. J. Wang, P. Huang, L. M. Nie, R. J. Xing, D. B. Liu, Z. Wang, J. Lin, S. H. Chen, G. Niu, G. M. Lu, and X. Y. Chen, “Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer‐Functionalized Gold Nanostars,” Adv. Mater. 25, 3055-3061 (2013).
[80] H. Y. Tseng, W. F. Chen, C. K. Chu, W. Y. Chang, Y. Kuo, Y. W. Kiang Y, and C. C. Yang, “On-substrate fabrication of a bio-conjugated Au nanoring solution for photothermal therapy application,” Nanotechnology 24, 065102 (2013).
[81] C. K. Chu, Y. C. Tu, J. H. Hsiao, J. H. Yu, C. K. Yu, S. Y. Chen, P. H. Tseng, S. Chen, Y. W. Kiang, and C. C. Yang, “Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring,” Nanotechnology 27, 115102 (2016).
[82] S. J. Wang, P. Huang, L. M. Nie, R. J. Xing, D. B. Liu, Z. Wang, J. Lin, S. H. Chen, G. Niu, G. M. Lu, and X. Y. Chen, “Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars,” Adv. Mater. 25, 3055-3061 (2013).
[83] Y. K. Xu, S. Hwang, S. Kim, and J. Y. Chen, “Two Orders of Magnitude Fluorescence Enhancement of Aluminum Phthalocyanines by Gold Nanocubes: A Remarkable Improvement for Cancer Cell Imaging and Detection,” ACS Appl. Mater. Interfaces 6, 5619-5628 (2014).
[84] T. T. Zhao, K. Yu, L. Li, T. S. Zhang, Z. P. Guan, N. Y. Gao, P. Y. Yuan, S. Li, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Gold Nanorod Enhanced Two-Photon Excitation Fluorescence of Photosensitizers for Two-Photon Imaging and Photodynamic Therapy,” ACS Appl. Mater. Interfaces 6, 2700-2708 (2014).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71886-
dc.description.abstract我們使用光學同調斷層掃描技術來研究細胞球體對金奈米顆粒的攝取過程。我們使用三種類型的金奈米顆粒,包括兩種金奈米棒和一種金奈米環,它們在光學同調斷層掃描操作波長1060 nm處具有顯著的侷部表面電漿子共振。我們分析沿著深度的光學同調斷層掃描信號強度分佈,得出細胞球團中金奈米顆粒的濃度分佈。早期的金奈米顆粒攝取行為,我們假設金奈米顆粒的濃度沿著深度指數衰減來構建簡單模型,以擬合金奈米顆粒攝取前30分鐘中的光學同調斷層掃描信號強度分佈。以此估計金奈米顆粒進入細胞球團穿透深度隨時間變化。在最初的30分鐘內,穿透深度大約為20微米,即2-3層細胞。我們也使用光學同調斷層掃描系統掃描長時間攝取金奈米棒的細胞球團。我們發現,細胞球團的攝取行為包括增殖細胞的內吞作用和胞吐作用以及細胞球體中休眠細胞層中金奈米顆粒的擴散過程。zh_TW
dc.description.abstractWe use the optical coherence tomography (OCT) scan technique to study the uptake process of Au nanoparticles (NPs) by a cell spheroid. By using three types of Au NP, including two gold nanorod (GNR) and one gold nanoring samples, which have significant localized surface plasmon resonances at the OCT operation wavelength (1060 nm), we analyze the OCT signal intensity profiles along the depth in a cell spheroid for understanding the Au NP concentration distribution in the cell spheroid. In studying the Au NP uptake behavior in the early stage, we build a simple model by assuming an exponential decay of Au NP concentration along depth for fitting the OCT signal intensity profiles in the first 30 min of Au NP incubation. The penetration depth of Au NPs into a cell spheroid can be calibrated. In the first 30 min, generally the penetration depth is around 20 microns, i.e., 2-3 layers of cell. We also use the OCT system to scan the cell spheroids incubated with GNRs for long times. It is found that the uptake behaviors of a cell spheroid include the endocytosis and exocytosis processes of the proliferating cells and the diffusion process of Au NPs in the quiescent cell layer in the cell spheroid.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:13:34Z (GMT). No. of bitstreams: 1
ntu-107-R04941086-1.pdf: 1655637 bytes, checksum: f33b2a779ea14d0f2bbc51622edae18c (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定書 i
致謝ii
中文摘要iii
Abstractiv
Chapter 1 Introduction1
Section 1.1 Optical coherence tomography 1
Section 1.2 Cell spheroid 2
Section 1.3 Gold nanoparticles 3
Section 1.4 Research motivations 5
Section 1.5 Thesis structure 5
Chapter 2 Experimental Setups 6
Section 2.1 OCT setup 6
Section 2.2 Cultivation of cell spheroid 6
Chapter 3 Formulations for Data Calibrations 9
Chapter 4 Cell Spheroid Uptake Results of Gold Nanorod in the Early Stage 14
Chapter 5 Cell Spheroid Uptake Results of Gold Nanoring in the Early Stage 24
Chapter 6 Long-term Cell Spheroid Uptake Results of Gold Nanorod 35
Chapter 7 Conclusions 46
References 47
dc.language.isoen
dc.subject光學同調斷層掃描zh_TW
dc.subjectoptical coherence tomographyen
dc.title以光學同調斷層掃描探討癌細胞球團攝入金奈米顆粒的行為zh_TW
dc.titleStudy on Gold Nanoparticle Uptake Behavior of a Cancer Cell Spheroid with Optical Coherence Tomographyen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee江衍偉(Yean-Woei Kiang),李翔傑(Hsiang-Chieh Lee),蔡孟燦(Meng-Tsan Tsai),孫嘉偉(Chia-Wei Sun)
dc.subject.keyword光學同調斷層掃描,zh_TW
dc.subject.keywordoptical coherence tomography,en
dc.relation.page56
dc.identifier.doi10.6342/NTU201804154
dc.rights.note有償授權
dc.date.accepted2018-09-28
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
1.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved