請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71835完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂宗昕(Chung-Hsin Lu) | |
| dc.contributor.author | Mei-Tsan Kuo | en |
| dc.contributor.author | 郭美贊 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:11:31Z | - |
| dc.date.available | 2023-11-09 | |
| dc.date.copyright | 2018-11-09 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-10-26 | |
| dc.identifier.citation | [1] N.G.Connelly, R.M.Hartshorn, T.Damhus, A.T.Hutton, Nomenclature of Inorganic Chemistry IUPAC Recommendations 2005 IUPAC Periodic Table of the Elements Fm No, Royal Society of Chemistry, 2005.
[2] IUPAC, IUPAC Periodic Table of the Elements, IUPAC. (2016) 1. [3] J.H.L.Voncken, The Rare Earth Elements : an Introduction, 2016. [4] M.Kristin, What Happened to the Rare-Earths Crisis? - MIT Technology Review, MIT Technol. Rev. (2015). [5] G.B.Haxel, J.B.Hedrick, G.J.Orris, Rare Earth Elements — Critical Resources for High Technology, United States Geol. Surv. Fact Sheet. 087 (2002) 4. [6] V.Roman, D.; Villaverde, The Disappearing Spoon and other true tales of madness, love, and the history of the world from the periodic table of the elements, Little, Brown and Co, 2010. [7] R.I.Walton, Solvothermal synthesis of cerium oxides, Prog. Cryst. Growth Charact. Mater. 57 (2011) 93–108. [8] T.Montini, M.Melchionna, M.Monai, P.Fornasiero, Fundamentals and Catalytic Applications of CeO2-Based Materials, Chem. Rev. 116 (2016) 5987–6041. [9] K.Reed, A.Cormack, A.Kulkarni, M.Mayton, D.Sayle, F.Klaessig, B.Stadler, Exploring the properties and applications of nanoceria: is there still plenty of room at the bottom?, Environ. Sci. Nano. 1 (2014) 390–405. [10] S.Karthika, T.K.Radhakrishnan, P.Kalaichelvi, A Review of Classical and Nonclassical Nucleation Theories, Cryst. Growth Des. 16 (2016) 6663–6681. [11] G.Cao, Y.Wang, Nanostructures and Nanomaterials, WORLD SCIENTIFIC, 2011. [12] J.Polte, Fundamental growth principles of colloidal metal nanoparticles - a new perspective, CrystEngComm. 17 (2015) 6809–6830. [13] R.L.Penn, J.F.Banfield, Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals, Science (80-. ). 281 (1998) 969–971. [14] J.I.Steinfeld, J.S.Francisco, W.L.Hase, Chemical kinetics and dynamics, edn. 2, Prentice Hall, 1999. [15] A.J.Bissette, S.P.Fletcher, Mechanisms of autocatalysis, Angew. Chemie - Int. Ed. 52 (2013) 12800–12826. [16] K.Byrappa, M.Yoshimura, Hydrothermal Technology—Principles and Applications, in: Handb. Hydrothermal Technol., Noyes Publications, 2001: pp. 1–52. [17] A.Rabenau, The Role of Hydrothermal Synthesis in Prepartive Chemistry, Agewandte Chemie Int. Ed. 24 (1985) 1026–1040. [18] H.Qin, X.Tan, W.Huang, J.Jiang, H.Jiang, Application of urea precipitation method in preparation of advanced ceramic powders, Ceram. Int. 41 (2015) 11598–11604. [19] Z.L.Wang, Y.Liu, Z.Zhang, Handbook of Nanophase and Nanostructured Materials, 2003. [20] C.Laberty-Robert, J.W.Long, E.M.Lucas, K.A.Pettigrew, R.M.Stroud, M.S.Doescher, D.R.Rolison, Sol-gel-derived ceria nanoarchitectures: Synthesis, characterization, and electrical properties, Chem. Mater. 18 (2006) 50–58. [21] T.Yu, J.Joo, Y.IlPark, T.Hyeon, Large-scale nonhydrolytic sol-gel synthesis of uniform-sized ceria nanocrystals with spherical, wire, and tadpole shapes, Angew. Chemie - Int. Ed. 44 (2005) 7411–7414. [22] F.L.Theiss, G.A.Ayoko, R.L.Frost, Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods - A review, Appl. Surf. Sci. 383 (2016) 200–213. [23] X.Feng, D.C.Sayle, Z.L.Wang, M.S.Paras, B.Santora, A.C.Sutorik, T.X.T.Sayle, Y.Yang, Y.Ding, X.Wang, Y.S.Her, Converting ceria polyhedral nanoparticles into single-crystal nanospheres, Science (80-. ). 312 (2006) 1504–1508. [24] G.Avgouropoulos, T.Ioannides, Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea-nitrate combustion method, Appl. Catal. A Gen. 244 (2003) 155–167. [25] E.Aneggi, D.Wiater, C.DeLeitenburg, J.Llorca, A.Trovarelli, Shape-dependent activity of ceria in soot combustion, ACS Catal. 4 (2014) 172–181. [26] M.Hirano, E.Kato, Hydrothermal synthesis of nanocrystalline cerium(IV) oxide powders, J. Am. Ceram. Soc. 82 (1999) 786–788. [27] H.X.Mai, L.D.Sun, Y.W.Zhang, R.Si, W.Feng, H.P.Zhang, H.C.Liu, C.H.Yan, Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes, J. Phys. Chem. B. 109 (2005) 24380–24385. [28] M.Hirano, E.Kato, Hydrothermal synthesis of two types of cerium carbonate particles, J. Mater. Sci. Lett. 18 (1999) 403–405. [29] C.H.Lu, H.C.Wang, Formation and microstructural variation of cerium carbonate hydroxide prepared by the hydrothermal process, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 90 (2002) 138–141. [30] C.S.Riccardi, R.C.Lima, M.L.dosSantos, P.R.Bueno, J.A.Varela, E.Longo, Preparation of CeO2 by a simple microwave-hydrothermal method, Solid State Ionics. 180 (2009) 288–291. [31] Z.Guo, F.Du, G.Li, Z.Cui, Synthesis and characterization of single-crystal Ce(OH)CO3 and CeO2 triangular microplates, Inorg. Chem. 45 (2006) 4167–4169. [32] R.Si, Y.W.Zhang, L.P.You, C.H.Yan, Self-organized monolayer of nanosized ceria colloids stabilized by poly(vinylpyrrolidone), J. Phys. Chem. B. 110 (2006) 5994–6000. [33] C.Pan, D.Zhang, L.Shi, CTAB assisted hydrothermal synthesis, controlled conversion and CO oxidation properties of CeO2 nanoplates, nanotubes, and nanorods, J. Solid State Chem. 181 (2008) 1298–1306. [34] N.C.Wu, E.W.Shi, Y.Q.Zheng, W.J.Li, Effect of pH of medium on hydrothermal synthesis of nanocrystalline cerium(IV) oxide powders, J. Am. Ceram. Soc. 85 (2002) 2462–2468. [35] M.Hirano, E.Kato, Hydrothermal synthesis of Cerium(IV) oxide, J. Am. Ceram. Soc. 79 (1996) 777–780. [36] B.Djuričić, S.Pickering, Nanostructured cerium oxide: Preparation and properties of weakly-agglomerated powders, J. Eur. Ceram. Soc. 19 (1999) 1925–1934. [37] P. Chen, I. Chen, Reactive Cerium(IV) Oxide Powders by the Homogeneous Precipitation Method, J. Am. Ceram. Soc. 76 (1993) 1577–1583. [38] A.I.Y.Tok, F.Y.C.Boey, Z.Dong, X.L.Sun, Hydrothermal synthesis of CeO2 nano-particles, J. Mater. Process. Technol. 190 (2007) 217–222. [39] H.Zhang, W.Wang, B.Zhang, H.Li, Q.Zhang, Controllable synthesis of spherical cerium oxide particles, RSC Adv. 6 (2016) 30956–30962. [40] M.Lin, Z.Y.Fu, H.R.Tan, J.P.Y.Tan, S.C.Ng, E.Teo, Hydrothermal synthesis of CeO2 nanocrystals: Ostwald ripening or oriented attachment?, Cryst. Growth Des. 12 (2012) 3296–3303. [41] Z.Ji, X.Wang, H.Zhang, S.Lin, H.Meng, B.Sun, S.George, T.Xia, A.E.Nel, J.I.Zink, Designed synthesis of CeO2 nanorods and nanowires for studying toxicological effects of high aspect ratio nanomaterials, ACS Nano. 6 (2012) 5366–5380. [42] F.Wang, V.N.Richards, S.P.Shields, W.E.Buhro, Kinetics and mechanisms of aggregative nanocrystal growth, Chem. Mater. 26 (2014) 5–21. [43] M.H.Oh, J.S.Nho, S.B.Cho, J.S.Lee, R.K.Singh, Novel method to control the size of well-crystalline ceria particles by hydrothermal method, Mater. Chem. Phys. 124 (2010) 134–139. [44] W.Gao, J.Li, X.Zhou, Z.Zhang, Y.Ma, Y.Qu, Repeatable fluorescence switcher of Eu3+-doped CeO2 nanorods by l(+)-ascorbic acid and hydrogen peroxide, J. Mater. Chem. C. 2 (2014) 8729–8735. [45] R.Wang, R.Dangerfield, Seed-mediated synthesis of shape-controlled CeO2 nanocrystals, RSC Adv. 4 (2014) 3615–3620. [46] T.V.Plakhova, A.Y.Romanchuk, S.N.Yakunin, T.Dumas, S.Demir, S.Wang, S.G.Minasian, D.K.Shuh, T.Tyliszczak, A.A.Shiryaev, A.V.Egorov, V.K.Ivanov, S.N.Kalmykov, Solubility of nanocrystalline cerium dioxide: Experimental data and thermodynamic modeling, J. Phys. Chem. C. 120 (2016) 22615–22626. [47] B.Bakiz, F.Guinneton, J.P.Dallas, S.Villain, J.R.Gavarri, From cerium oxycarbonate to nanostructured ceria: Relations between synthesis, thermal process and morphologies, J. Cryst. Growth. 310 (2008) 3055–3061. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71835 | - |
| dc.description.abstract | 本論文提出了一改良型之水熱法製程以合成高結晶性之奈米二氧化鈰(CeO2)晶體。本論文先以水熱法製備碳酸氧氧鈰(CeOHCO3),再以合成得之碳酸氫氧鈰粉體作為鈰離子來源、雙氧水(H2O2)作為氧化劑,進行第二次水熱反應合成奈米氧化鈰晶體。本論文成功合成得到晶粒大小超過30 nm之奈米氧化鈰晶體,且合成所需之反應溫度僅為180°C,反應時間僅需6小時。在水熱環境下,鈰三價離子可以自碳酸氫氧鈰粉體當中釋出,並進一步行氧化-水解-脫水反應來形成二氧化鈰晶體。碳酸氫氧鈰粉體的緩慢溶解特性可以控制鈰離子的釋放速率,並控制成核點的產生速率,進而能有助於成長高結晶性之二氧化鈰晶體。本論文所提出之奈米氧化鈰晶體合成機制可解釋為一「自催化溶解-氧化-結晶」機制,質子在反應中有催化的效果,可促進碳酸氫氧鈰粉體溶解並製造有利於奈米氧化鈰晶體成長的環境。本論文所提出之奈米氧化鈰晶體合成製程可有效降低合成大晶粒大小之氧化鈰晶體所需要之反應溫度,並縮短反應所需之時間,且有潛力可用以合成不同種之金屬氧化物材料。 | zh_TW |
| dc.description.abstract | A modified hydrothermal route was successfully developed to synthesize cerium oxide (CeO2) nanocrystals with high crystallinity. Cerium carbonate hydroxide (CeOHCO3) and hydrogen peroxide (H2O2) were used as the source of cerium ions and oxidizer, respectively, and CeO2 nanocrystals with crystallite size of more than 30 nm were successfully synthesized at 180 °C within 6 h. Ce3+ ions are released from CeOHCO3 particles under hydrothermal condition, and forming CeO2 via the following oxidization-hydrolysis-dehydration process. The slow dissolution of CeOHCO3 particles controls the releasing rate of cerium ions, which can control the formation nuclei and would be benign to grow CeO2 nanocrystals with large crystallite size. The growth mechanism of the CeO2 nanocrystals is elucidated as an autocatalytic dissolution-oxidization-crystallization process, and protons are proved to have catalytic effects. The present protocol can significantly reduce the reaction time and the reaction temperature for synthesizing CeO2 nanocrystals with high crystallinity, and could potentially be applied to synthesize other oxide materials. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:11:31Z (GMT). No. of bitstreams: 1 ntu-107-R05524072-1.pdf: 3700748 bytes, checksum: bdb984a9c1c0504b46cdf0dceb29ecf8 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II Table of Contents III List of Tables V List of Figures VI Chapter 1 Introduction and Background 1 1.1 Rare earth elements 1 1.2 Cerium and cerium oxide 3 1.3 Crystal growth mechanism 4 1.3.1 Classical nucleation theory 4 1.3.2 LaMer’s nucleation theory 7 1.3.3 Ostwald-ripening process 8 1.3.4 Oriented-attachment 12 1.4 Autocatalysis 13 1.5 Hydrothermal method and forced hydrolysis 14 1.6 Urea-precipitation method 16 1.7 Synthesis of CeO2 nanoparticles 17 1.7.1 Synthesis strategies of CeO2 nanoparticles 17 1.7.2 Growth mechanism of CeO2 nanoparticles in the hydrothermal method 20 1.8 Research objectives 21 Chapter 2 Experimental Method 32 2.1 Hydrothermal synthesis of CeOHCO3 powder 32 2.2 Hydrothermal synthesis of CeO2 nanocrystals 32 2.3 Characterization 33 Chapter 3 Results and Discussions 36 3.1 Effects of acid/base concentration on the synthesis of CeO2 nanocrystals 36 3.2 Effects of H2O2 concentration on the synthesis of CeO2 nanocrystals 39 3.3 Growth mechanism of CeO2 nanocrystals 40 3.4 Role of protons in the reaction 44 3.5 Dissolution-based autocatalytic reaction 49 3.6 Comparison with the classic Ostwald-ripening process 51 Chapter 4 Summary 71 Reference 73 | |
| dc.language.iso | en | |
| dc.subject | 二氧化鈰 | zh_TW |
| dc.subject | 水熱法 | zh_TW |
| dc.subject | 自催化反應 | zh_TW |
| dc.subject | 奧斯華熟化 | zh_TW |
| dc.subject | 結晶成長 | zh_TW |
| dc.subject | Solvothermal method | en |
| dc.subject | Autocatalysis | en |
| dc.subject | Ostwald-ripening | en |
| dc.subject | Crystal growth | en |
| dc.subject | Cerium oxide | en |
| dc.title | 以溶解水熱製程製備奈米二氧化鈰結晶 | zh_TW |
| dc.title | Synthesis of CeO2 nanocrystals via a dissolution-based hydrothermal process | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝宗霖(Shieh Tzong-Lin),溫政彥(Wen Cheng-Yen) | |
| dc.subject.keyword | 二氧化鈰,水熱法,自催化反應,奧斯華熟化,結晶成長, | zh_TW |
| dc.subject.keyword | Cerium oxide,Solvothermal method,Autocatalysis,Ostwald-ripening,Crystal growth, | en |
| dc.relation.page | 81 | |
| dc.identifier.doi | 10.6342/NTU201804245 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-10-26 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 3.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
