請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71831完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 胡植慶(Jyr-Ching Hu) | |
| dc.contributor.author | Shao-Hung Lin | en |
| dc.contributor.author | 林紹弘 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:11:21Z | - |
| dc.date.available | 2021-11-08 | |
| dc.date.copyright | 2018-11-08 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-10-29 | |
| dc.identifier.citation | Axel Oddone et al. (2011). “The e-GEOS Collection Planning and Data Access Service', e-GEOS International Conference, Rome, Italy.
Angelier, J., Barrier, E., & Chu, H. T. (1986). Plate collision and paleostress trajectories in a fold-thrust belt: the foothills of Taiwan. Tectonophysics, 125(1-3), 161-178. Angelier, J., Lee, J. C., Chu, H. T., Hu, J. C., Lu, C. Y., Chan, Y. C., ... & Yi-Ben, T. (2001). Le séisme de Chichi (1999) et sa place dans l'orogène de Taiwan. Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science, 333(1), 5-21. ASI (2009). COSMO-SkyMed System Description & User Guide, Italian Space Agency. Chang, C. P., Chen, K. S., Wang, C. T., Yen, J. Y., Chang, T. Y., & Lin, C. W. (2004). Application of space-borne radar interferometry on crustal deformations in Taiwan: A perspective from the nature of events. Terrestrial, Atmospheric and Oceanic Sciences, 15(3), 523-543. Chaussard, E., S. Wdowinski, E. Cabral-Cano, and F. Amelung (2014), Land subsidence in central Mexico detected by ALOS InSAR time-series, Remote Sens. Environ., 140, 94–106, doi:10.1016/j.rse.2013.08.038. Chen, C.-T., J.-C. Hu, C.-Y. Lu, J.-C. Lee, and Y.-C. Chan (2007), Thirty-year land elevation change fromsubsidence to uplift following the termination of groundwater pumping and its geological implications in the Metropolitan Taipei Basin, Northern Taiwan, Eng. Geol., 95(1–2), 30–47, doi:10.1016/j.enggeo.2007.09.001. Chia, Y. P., Chang, M. H., Liu, W. I., & Lai, T. C. (1999). Hydrogeologic characterization of Taipei Basin. Central geological survey special publication, 11, 393-406. Davis, G.H. (1982). Prospect risk analysis applied to ground-water reservoir evaluation. Ground Water 20, 657–662. Domenico, P. A. & F. W. Schwartz (1990). Physical and Chemical Hydrogeology, 824 pp., John Wiley, New York. Ezquerro, P., Herrera, G., Marchamalo, M., Tomás, R., Béjar-Pizarro, M., & Martínez, R. (2014). A quasi-elastic aquifer deformational behavior: Madrid aquifer case study. Journal of hydrology, 519, 1192-1204. Ferretti, A., Prati, C., Rocca, F. (2000). Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 38, 2202–2212. Freeze, R. A., and J. A. Cherry (1979), Groundwater, Prentice-Hall, Englewood Cliffs, N. J. Galloway, D., Burbey, T. (2011). Review: regional land subsidence accompanying groundwater extraction. Hydrogeol. J. 19, 1459–1486. Hanssen, R. F. (2001). Radar interferometry: data interpretation and error analysis (Vol. 2). Springer Science & Business Media. Harbaugh, A. W. (2005). MODFLOW-2005, the U.S. Geological Survey Modular Ground-Water Model—The ground-water flow process, U.S. Geol. Surv. Techniques and Methods 6-A16. Heath, R. C. (1982). Basic groundwater hydrology. In US Geological Survey Water Supply Paper (Vol. 2220). US Geological Survey. Hoffmann, J., H. A. Zebker, D. L. Galloway, and F. Amelung (2001), Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by synthetic aperture radar interferometry, Water Resour. Res., 37(6), 1551–1566, doi:10.1029/2000WR900404. Hoffman, J. (2003). The application of satellite radar interferometry to the study of land subsidence over developed aquifer systems. PhD Thesis, University of Stanford, 211 pp. Hoffmann, J. (2003). The application of satellite radar interferometry to the study of land subsidence over developed aquifer systems (Vol. 6). Stanford University. Hoffmann, J., Galloway, D.L., Zebker, H.A. (2003). Inverse modeling of interbed storage parameters using land subsidence observations, Antelope Valley, California. Water Resour. Res. 39, 5–10. Hooper, A. J. (2006). Persistent scatter radar interferometry for crustal deformation studies and modeling of volcanic deformation. Hooper, A. (2008). A multi‐temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophysical Research Letters, 35(16). Hooper, A. (2010). A statistical-cost approach to unwrapping the phase of InSAR time series. In Proceeding of International Workshop on ERS SAR Interferometry (Vol. 30). Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical research letters, 31(23). Hooper, A., & Zebker, H. A. (2007). Phase unwrapping in three dimensions with application to InSAR time series. JOSA A, 24(9), 2737-2747. Hu, J.-C., Angelier, J., Lee, J.-C., Chu, H.-T., Byrne, D., (1996). Kinematics of convergence, deformation and stress distribution in the Taiwan collision area: 2-D finite-element numerical modelling. Tectonophysics 255, 243–268. Hu, J.-C., Yu, S.-B., Angelier, J., Chu, H.-T. (2001). Active deformation of Taiwan from GPS measurements and numerical simulations. J. Geophys. Res. 106, 2265–2280. Hu, J.-C., Yu, S.-B., Chu, H.-T., Angelier, J. (2002). Transition tectonics of northern Taiwan induced by convergence and trench retreat, in Byrne, T.B., and Liu, C.-S., eds., geology and geophysics of an arc–continent collision, Taiwan. Geol. Soc. Am. Spec. Pap. 358, 149–162. http://dx.doi.org/10.1130/0-8137-2358-2.147. Jacob, C. E. (1940). On the flow of water in an elastic artesian aquifer. Eos, Transactions American Geophysical Union, 21(2), 574-586. Masterlark, T., & Wang, H. F. (2002). Transient stress-coupling between the 1992 Landers and 1999 Hector Mine, California, earthquakes. Bulletin of the Seismological Society of America, 92(4), 1470-1486. McDonald, M.G., and Harbaugh, A.W. (1988). A modular three-dimensional finite-difference ground-water flow model: Techniques of Water-Resources Investigations of the United States Geological Survey, Book 6, Chapter A1, 586 p. McDonald, M. G., & Harbaugh, A. W. (1988). A modular three-dimensional finite-difference ground-water flow model (Vol. 6, p. A1). Reston, VA: US Geological Survey. McGuire, V. et al. (2003). Water in Storage and Approaches to Ground-Water Management, High Plains Aquifer, 2000. USGS Circular 1243. Ezquerro, P., Herrera, G., Marchamalo, M., Tomás, R., Béjar-Pizarro, M., & Martínez, R. (2014). A quasi-elastic aquifer deformational behavior: Madrid aquifer case study. Journal of hydrology, 519, 1192-1204. Riley, F.S. (1984). Developments in borehole extensometry. Paper presented at: International Symposium on Land Subsidence, 3rd, Venice. International Association of Scientific Hydrology Publication 151, 169–186. (1984, March). Riley, F.S. (1969). Analysis of borehole extensometer data from central California. In: Tison, L.J. (Ed.) Land subsidence. In: Proceedings of the Tokyo Symposium, September 1969, IAHS Pub. vol. 88, pp. 423–431. <http://iahs.info/redbooks/a088/088047.pdf>. Seno, T. (1977). The instantaneous rotation vector of the Philippine Sea plate relative to the Eurasian plate., Tectonophysics, 42, 209-226.D41 Sneed, M., Galloway, D.L. (2000). Aquifer-system compaction and land subsidence: measurements, analyses, and simulations: the Holly site, Edwards Air Force Base, Antelope Valley, California. US Geol Surv Water-Resour Invest Rep 00-4015. 65 pp. http://pubs.usgs.gov/wri/2000/wri004015/. Song, S.-R., Tsao, S., Lo, H.-J. (2000). Characteristics of the Tatun volcanic eruptions, North Taiwan; implications for a cauldron formation and volcanic evolution. J. Geol. Soc. China 43, 361–378. Su, P. R. (2018). Developments of the Depositional Systems and Basin Subsidence since 50ka of the Taipei Basin. PhD thesis, National Taiwan University, 135pp. Suppe, J. (1981). Mechanics of mountain building and metamorphism in Taiwan. Mem. Geol. Soc. China 4, 67–89. Teng, L.S. (1990). Late Cenozoic arc–continent collision in Taiwan. Tectonophysics 183, 57–76. Teng, L.S., Lee, C.-T., Tsai, Y.-B., Hsiao, L.-Y. (2000). Slab breakoff as amechanismfor flipping of subduction polarity in Taiwan. Geology 28, 155–158. Teng, L. S., Yuan, P.B., Chen, P.-Y., Peng, C.-H., Lai, T.-C., Fei, L.-Y., Liu, H.-C. (1999). Lithostratigraphy of Taipei Basin deposits. Cent. Geol. Surv. Spec. Publ. 11, 41–66 (in Chinese with English abstract). Teng, L. S., Lee, C.-T., Peng, C.-H., Chen,W.-F., Chu, C.-J. (2001). Origin and geological evolution of the Taipei Basin, northern Taiwan. West. Pac. Earth Sci. 1 (2), 115–142. Teng, L. S., & Lin, A. T. (2004). Cenozoic tectonics of the China continental margin: insights from Taiwan. Geological Society, London, Special Publications, 226(1), 313-332. Teng, L. S., Yuan, P. B., Chen, P. Y., Peng, C. H., Lai, T. C., Fei, L. Y., & Liu, H. C. (1999). Lithostratigraphy of Taipei Basin deposits. Central Geological Survey Special Publication, 11, 41-66. Terzaghi, K. (1925). Settlement and Consolidation of Clay. McGraw-Hill, New York, pp. 874–878. Terzaghi, K. (1943). Theoretical Soil Mechanics, 510 pp., John Wiley, New York. Todd, D.K. (1980). Groundwater Hydrology, second ed. John Wiley & Sons, New York. Tomás, R., Romero, R., Mulas, J., Marturià, J.J., Mallorquí, J.J., Lopez-Sanchez, J.M., Herrera, G., Gutiérrez, F., González, P.J., Fernández, J., Duque, S., Concha-Dimas, A., Cocksley, G., Castañeda, C., Carrasco, D., Blanco, P. (2014). Radar interferometry techniques for the study of ground subsidence phenomena: a review of practical issues through cases in Spain. Environ. Earth Sci. 71, 163–181. Tung, H., Chen, H. Y., Hu, J. C., Ching, K. E., Chen, H., & Yang, K. H. (2016). Transient deformation induced by groundwater change in Taipei metropolitan area revealed by high resolution X-band SAR interferometry. Tectonophysics, 692, 265-277. Yu, S.-B., Chen, H.-Y., Kuo, L.-C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics 274, 41–59. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71831 | - |
| dc.description.abstract | Taipei basin is located in the northern Taiwan. In the historic records of groundwater level, it reveals that groundwater was overexploited in 1950s and has risen since the prohibition by government in 1970s. As for last decade, groundwater level change shows a high correlation with short-term ground surface deformation. In this study, we apply PSInSAR technique to detect land surface deformation by using 29 Cosmo-Skymed (CSK) satellite images in a period from 2011/5/21 to 2015/4/2. The result shows a basin-scaled uplift during the whole period, however, the time-series also indicate that the basin went through a subsidence stage and a following uplift stage. With the land deformation information, this study further make the comparison with groundwater level data and extract the elastic storage coefficients (Ske) for each well. The evaluated Ske values in confined aquifer are ranged from 4.2×10−4 to 8.91×10−3. Then, we integrate the Ske values and PSInSAR data into the estimation of groundwater maps and storage variations under two periods: reduction period (2011/12/27~2012/8/11) and recovery period (2012/8/11~ 2013/2/19). Taking the advantage of high density of PS points, the spatial uncertainty can be reduced and the volume of water expelled in the extraction period can be quantitatively evaluated. The estimated storage loss in the reduction period is about 1.6 million cubic meters. The estimated storage variation result indicate that the study area is generally featuring elastic behavior with no severe storage loss after the reduction-recovery cycle, but there are still a little regions with slight storage loss that we can pay attention to. Furthermore, based on the referenced hydraulic head map achieved from numerical model through MODFLOW, we integrate the estimated Ske values and observed deformation derived from PSInSAR to retrieve the groundwater level map in specific date through whole basin. Note that the hydrogeological conceptual model is based on deep drilled borehole data and horizontal grid sizes 500×500 meters are adopted. The observed groundwater level data in March 2012 is adopted in steady-state calibration. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:11:21Z (GMT). No. of bitstreams: 1 ntu-107-R05224212-1.pdf: 12046919 bytes, checksum: a69582548587647a11b4a6b1ffb94211 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
致謝 # Abstract i Table of Contents iii List of Figures vii List of Tables xiv Chapter 1 Introduction 1 1.1 Motivation 3 1.2 Literature Review 4 1.2.1 The historical record of groundwater level in the Taipei Basin 4 1.2.2 Geodesy measurements and the subsidence mechanisms in the Taipei Basin 6 1.2.3 The mechanisms of the pumping induced land subsidence 9 1.3 The structure of thesis 10 Chapter 2 Geological background 13 2.1 River system in Taipei 14 2.2 Tectonic setting 15 2.3 The origination and evolution of the Taipei Basin 17 2.4 Sedimentary architecture 21 2.5 Hydrogeological classification 22 2.5.1 Hydrological units 22 2.5.2 Hydrogeological profiles 25 Chapter 3 Methodology 28 3.1 Synthetic Aperture Radar (SAR) 28 3.2 InSAR, DInSAR and PSInSAR 30 3.2.1 PS points selection 34 3.2.2 DEM error correction 37 3.2.3 Phase unwrapping 38 3.2.4 Spatially related error correction 39 3.2.5 StaMPS 39 3.3 Numerical modeling through MODFLOW 40 3.3.1 Darcy’s law 41 3.3.2 Numerical modeling 42 3.3.3 Boundary condition 45 3.3.4 Governing flow equation 46 3.3.5 Introduction of MODFLOW packages 47 3.4 Hydrogeological calculation 48 3.4.1 Aquifer deformation and groundwater storage 49 3.4.2 Estimation of elastic storage coefficient 50 3.4.3 Estimation of groundwater level 51 3.4.4 Estimate the storage variation from groundwater level 52 Chapter 4 PSInSAR results and hydrogeological calculation 55 4.1 PSInSAR results 55 4.1.1 SAR images 55 4.1.2 GPS data correction 58 4.1.3 PSInSAR-derived deformation rate 59 4.1.4 The comparison of GPS and PSInSAR averaged velocity 62 4.1.5 PSInSAR time-series 63 4.2 Comparison of groundwater level and land deformation 64 4.3 Hydrogeological calculation 66 4.3.1 Strain-stress diagram 66 4.3.2 Estimation of elastic storage coefficient 68 4.3.3 Estimation of groundwater level 69 4.3.4 Estimate the storage variation from groundwater level 72 Chapter 5 Numerical modeling result 76 5.1 Hydrogeological conceptual model 76 5.2 Grid setting and boundary condition 77 5.2.1 General grid setting 77 5.2.2 Stratification elevation 79 5.2.3 Boundary condition 81 5.3 Parameters setting 81 5.3.1 Hydraulic conductivity (HK) 81 5.3.2 Pumping well 82 5.3.3 Recharge (RCH) 83 5.3.4 Initial head 83 5.3.5 River conductance 83 5.4 Model calibration 84 5.4.1 Parameter adjustment 85 5.4.2 Calibration result 86 Chapter 6 Discussions 89 6.1 Estimated groundwater level maps 89 6.1.1 The referenced groundwater level map 89 6.1.2 The spatial-temporal variation of groundwater level 90 6.1.3 The residual between observed and simulated groundwater level 92 6.2 Estimation of the elastic storage coefficients 94 6.2.1 The factors affecting the estimated results 94 6.2.2 Relationship between groundwater level and PSI time-series 95 6.2.3 The distribution of storage coefficients in the Taipei Basin 99 6.3 Evaluation of storage loss in the Taipei Basin 101 6.3.1 The purpose of estimating groundwater storage variation 101 6.3.2 Volumetric groundwater storage variation 101 6.4 Recommendations 103 6.4.1 Suggestions for improvement 103 6.4.2 Groundwater resource exploitation in Taipei 106 Chapter 7 Conclusions 107 References 109 Appendix A 119 Appendix B 124 | |
| dc.language.iso | en | |
| dc.subject | 數值模型 | zh_TW |
| dc.subject | 持久性散射體合成孔徑雷達 | zh_TW |
| dc.subject | 儲水系數 | zh_TW |
| dc.subject | 台北盆地 | zh_TW |
| dc.subject | PSInSAR | en |
| dc.subject | MODFLOW | en |
| dc.subject | Taipei Basin | en |
| dc.subject | Elastic storage coefficient | en |
| dc.title | 利用持久性散射體合成孔徑雷達干涉技術與數值模型探討台北盆地地下水引起的地表變形與水力參數 | zh_TW |
| dc.title | Analyzing groundwater-induced deformation and aquifer behavior in the Taipei Basin using PSInSAR and numerical model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 王士榮(Shih-Jung Wang) | |
| dc.contributor.oralexamcommittee | 邱永嘉,謝嘉聲,洪偉嘉 | |
| dc.subject.keyword | 持久性散射體合成孔徑雷達,台北盆地,儲水系數,數值模型, | zh_TW |
| dc.subject.keyword | PSInSAR,MODFLOW,Taipei Basin,Elastic storage coefficient, | en |
| dc.relation.page | 129 | |
| dc.identifier.doi | 10.6342/NTU201804252 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-10-30 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 11.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
