Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71801
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭振華
dc.contributor.authorYun-Ju Chanen
dc.contributor.author詹雲如zh_TW
dc.date.accessioned2021-06-17T06:10:18Z-
dc.date.available2021-11-23
dc.date.copyright2018-11-23
dc.date.issued2018
dc.date.submitted2018-11-21
dc.identifier.citation[1] M. F. Fallon, G. Papadopoulos, J. J. Leonard and N. M. Patrikalakis, 'Cooperative AUV Navigation using a Single Maneuvering Surface Craft,' The International Journal of Robotics Research, pp. 1461-1474, 9 August 2010.
[2] G. Antonelli, A. Caiti, V. Calabrò, S. Chiaverini, 'Designing Behaviors to Improve Observability for Relative Localization of AUVs,' 2010 IEEE International Conference on Robotics and Automation, pp. 4270-4275, 15 July 2010.
[3] G. Antonelli, F. Arrichiello, S. Chiaverini, G. S. Sukhatme, 'Observability Analysis of Relative Localization for AUVs Based On Ranging And Depth Measurements,' 2010 IEEE International Conference on Robotics and Automation, pp. 4276-4281, 15 July 2010.
[4] A. Gadre, 'Observability Analysis in Navigation Systems with an Underwater Vehicle Application,' Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 2007.
[5] F. Arrichiello, G. Antonelli, A. P. Aguiar, A. Pascoal, 'An Observability Metric for Underwater Vehicle Localization Using Range Measurements,' Sensors (Basel), pp. 16191-16215, 27 November 2013.
[6] S. E. Webster, R. M. Eustice, H. Singh, L. L. Whitcomb, 'Preliminary Deep Water Results in Single-Beacon One-Way-Travel-Time Acoustic Navigation for Underwater Vehicles,' 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2053-2060, 15 December 2009.
[7] Z. J. Harris, L. L. Whitcomb, 'Preliminary Study of Cooperative Navigation of Underwater Vehicles Without a DVL Utilizing Range and Range-Rate Observations,' 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 2618-2624, 09 June 2016.
[8] B. S. Bourgeois, 'Using Range and Range Rate for Relative Navigation,' Naval Research Laboratory Marine Geosciences Division Stennis Space Center, Arlington, 2007.
[9] F. M. Ham, B. R. Grover, 'Observability Eigenvalues and Kalman filter,' IEEE Transactions on Aerospace and Electronic Systems, pp. 269-273, March 1983.
[10] M. Li, D. Wang, X. Huang, 'Study on the Observability Analysis Based on the Trace of Error Covariance Matrix for Spacecraft Autonomous Navigation,' 2013 10th IEEE International Conference on Control and Automation (ICCA), pp. 95-98, 12 June 2013.
[11] S. W. Huang, N. Taniguchi, C. F. Huang, A. T. Hsiao, Y. J. Chan, L. Y. Chang, J. H. Guo, 'Autonomous Underwater Vehicle Localization Using an Ocean Acoustic Tomography Sensor,' OCEANS 2018 MTS/IEEE Kobe, pp. 1-5, May 2018.
[12] P. J. Huxel, R. H. Bishop, 'Navigation Algorithms and Observability Analysis for Formation Flying Missions,' Journal of Guidance, Control, and Dynamics, pp. 1218-1231, July 2009.
[13] H. Schneider, G. P. Barker, Matrics and Linear Algebra, New York: Holt, Rinehart and Winston, 1973.
[14] Q. Fang, X. S. Huang, 'A Unified Approach of Observability Analysis for Airborne SLAM,' Journal of Central South University, pp. 2432-2439, September 2013.
[15] A. J. Krener, K. Ide, 'Measures of Unobservability,' Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, pp. 6401-6406, 29 January 2010.
[16] X. S. Zhou, S. I. Roumeliotis, 'Robot-To-Robot Relative Pose Estimation from Range Measurements,' IEEE Transactions on Robotics, pp. 1379-1393, 11 November 2008.
[17] A. T. Hsiao, 'Localization of An Autonomous Underwater Vehicle Using Acoustic Sounds from a Single Beacon,' Graduate Institute of Engineering Science and Ocean Engineering College of Engineering Master Thesis, National Taiwan University, 2018.
[18] S. W. Huang, N. Taniguchi, A. T. Hsiao, C. F. Huang, E. Chen, C. L. Ting, J. H. Guo, 'Autonomous Underwater Vehicle Localization Using Ocean Tomography Sensor Nodes,' OCEANS 2016 MTS/IEEE Monterey, pp. 1-5, 01 December 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71801-
dc.description.abstract本研究利用載具間距離與距離變率的量測所進行之觀測度分析,以探討自主式水下載具的定位問題。動態系統之觀測性可藉由對觀測矩陣之李導數(Lie derivatives)取格拉姆矩陣所獲得之格拉姆觀測矩陣進行研究。觀測度的高低可由格拉姆觀測矩陣的條件數之倒數(簡稱逆條件數)為衡量以量測資料估測水下載具位置之容易程度;當逆條件數提高,則系統觀測度將隨之改善。本研究提出一同時考慮距離與距離變率的條件數公式;與傳統僅使用距離量測相比較後發現,其觀測度隨 (相對速度向量與相對位置夾角)與 (相對位置與相對速度的比值)之變化趨勢一致,加入距離變率在夾角為 與 ,其系統觀測度有最佳改善。此外,以擴展卡爾曼濾波器(EKF)進行水下載具定位,其誤差協方差矩陣之跡數與逆條件數成反比關係。
本研究首先以模擬方式驗證所推導之公式,討論了直線、圓形、方型和螺旋路徑的逆條件數分析。再者,藉由2017年於基隆望海巷海域,以一配備有羅盤、都普勒速度記錄儀(DVL)與聲學層析儀之自主式水下載具所搜集之實驗數據進行分析。由於聲學層析儀發射以最大長度序列碼(m-sequences)的相位調變訊號,可同時量測距離和距離變率的資訊。實驗結果與模擬結果一致,加入距離變率的量測值可以增加逆條件數,因此提高載具定位的精準度。
zh_TW
dc.description.abstractThis study investigates the localization of underwater vehicles via the observability analysis using both inter-vehicle range and range-rate measurements. An instantaneous observability of the dynamic system is defined by taking the Gramian matrix of the Lie derivatives, in which the condition number of the observability Gramian matrix is a metric of the observability. Better observability is obtained when the condition number is reduced (the inverse of the condition number is increased). The condition number formula is derived with not only the range but also the range-rate measurements. The overall characteristics of the inverse of the condition number for including both measurements are similar to those for using only range measurements. With additional range-rate measurements, the improvement is observed when the angle between the relative velocity vector and the position vector is close to or . With increasing the inverse of the condition number, the trace of the Extended Kalman Filter (EKF) error covariance matrix is reduced.
The derived framework was demonstrated first using numerical simulations; Several routes including straight, circular, spiral and square paths were considered. Then a field experiment was conducted in WangHiXiang Bay, in 2017, with an Autonomous Underwater Vehicle (AUV) equipped with a compass, a tomographic sensor and a Doppler Velocity Log (DVL). The tomographic sensor transmits m-sequence signals, providing range and range-rate data simultaneously. The experiment results are consistent with the simulation results. Incorporating range-rate measurements improves the inverse of the condition number and therefore the localization of AUV.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:10:18Z (GMT). No. of bitstreams: 1
ntu-107-R05525035-1.pdf: 12884564 bytes, checksum: 80d16f4de4ac7496404e36a04ba26a87 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents摘要 i
ABSTRACT ii
CONTENTS iv
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Review 2
1.3 Thesis Organization 4
Chapter 2 Motion and Measurement Models 6
2.1 State description of AUV 6
2.2 Measurement Model 7
2.2.1 Range Measurement 8
2.2.2 Range-rate Measurement 8
2.2.3 Range Only Measurement Model 10
2.2.4 Range plus Range-rate Measurement Model 10
Chapter 3 Observability 12
3.1 Observability matrix 12
3.1.1 Instantaneous Observability Matrix 12
3.1.2 Total Observability Matrix 15
3.1.3 Observability Gramian Matrix 16
3.2 Condition Number 19
3.3 Observability Analysis 20
3.3.1 Range only Observability 21
3.3.2 Range plus Range-rate Observability 23
3.3.3 Range plus Range-rate Observability multiplied by a Gain 30
3.4 The Extended Kalman Filter 33
3.4.1 Nonlinear State Prediction 34
3.4.2 Nonlinear Measurement Model 36
3.4.3 Error Covariance Matrix 37
Chapter 4 Simulations and Experiments 39
4.1 Simulations 39
4.1.1 Observability of Simulation Path 39
4.1.2 Error Covariance Matrix 59
4.2 Experiments 62
4.2.1 Experimental Configuration 62
4.2.2 Experimental Analysis and Results 67
Chapter 5 Conclusions 92
Reference 93
dc.language.isozh-TW
dc.subject水聲層析法zh_TW
dc.subject距離zh_TW
dc.subject水下定位zh_TW
dc.subject距離變率zh_TW
dc.subject觀測度zh_TW
dc.subject格拉姆矩陣zh_TW
dc.subject擴展卡爾曼濾波器zh_TW
dc.subjectextended Kalman filteren
dc.subjectocean acoustic tomographyen
dc.subjectobservability Gramian matrixen
dc.subjectrange-rateen
dc.subjectrangeen
dc.subjectunderwater localizationen
dc.title利用距離和距離變率進行自主式水下載具之觀測度分析zh_TW
dc.titleObservability Analysis of Autonomous Underwater Vehicles Using Range and Range-Rate Measurementsen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee戴璽恆,黃千芬,黃盛煒
dc.subject.keyword水下定位,距離,距離變率,觀測度,格拉姆矩陣,擴展卡爾曼濾波器,水聲層析法,zh_TW
dc.subject.keywordunderwater localization,range,range-rate,observability Gramian matrix,extended Kalman filter,ocean acoustic tomography,en
dc.relation.page96
dc.identifier.doi10.6342/NTU201804287
dc.rights.note有償授權
dc.date.accepted2018-11-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
12.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved