請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71792
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 彭隆瀚(Lung-Han Peng) | |
dc.contributor.author | Jun-Jie Lin | en |
dc.contributor.author | 林俊傑 | zh_TW |
dc.date.accessioned | 2021-06-17T06:09:58Z | - |
dc.date.available | 2021-11-29 | |
dc.date.copyright | 2018-11-29 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-11-27 | |
dc.identifier.citation | Reference
1. https://www.olympus-lifescience.com/en/microscope-resource/ 2. http://www.nichia.co.jp/en/about_nichia/index.html 3. D.C. Look , “ Recent advances in ZnO materials and devices,” Mater. Sci. Eng., B 80, 383.387 (2001) 4. J.D. Ye , “ Electroluminescent and transport mechanisms of n-ZnO/p-Si heterojunctions,” Appl. Phys. Lett. 88, 182112 (2006) 5. S.T. Tan, “Ultraviolet and visible electroluminescence from n-ZnO/SiOx/(n,p)-Si heterostructured light-emitting diodes” Appl. Phys. Lett. 93, 013506 (2008) 6. A. B. Djurišić, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures” Adv. Funct. Mater. 2004, 14, 856. 7. N H Alvi “The origin of the red emission in n-ZnO nanotubes/p-GaN white light emitting diodes” Nano scale Research Letters 2011 6:130 8. 96年11月 251期 工業材料雜誌 101 9. E.A. Kraut, “Precise Determination of the Valence-Band Edge in X-Ray Photoemission Spectra: Application to Measurement of Semiconductor Interface Potentials” Phys. Rev. Lett. 44, 1620 10. 83年2月 86期 工業材料雜誌 101 11. H Altuntas,“Current transport mechanisms in plasma-enhanced atomic layer deposited AlN thin films” Journal of Applied Physics 117,155101 (2015) 12. MOS (Metal Oxide Semiconductor) Physics and Technology by E.H. Nicollian 13. Frank Stern, “Self-Consistent Results for n -Type Si Inversion Layers” Phys. Rev. B. 5, 4891,1972 14. AMC Serra, “A one-dimensional, self-consistent numerical solution of Schrödinger and Poisson equations” Journal of Applied Physics 70, 2734 (1991) 15. https://zh.wikipedia.org/wiki/牛顿法 16. S Takagi,“Characterization of Inversion-Layer Capacitance of Holes in Si MOSFET’s” IEEE TRANSACTIONS ON ELECTRON DE-VICES, VOL. 57, NO. 11, NOVEMBER 2010 17. S Takagi,“Impact of Electron and Hole Inversion-Layer Capacitance on Low Voltage Operation of Scaled n- and p-MOSFET's” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 47, NO. 5, MAY 2000 18. S Takagi,“Quantitative Understanding of Inversion-Layer Capaci-tance in Si MOSFET' s” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 42, NO. 12, DECEMBER 1995 19. Koh B H,Chim W K, “ Quantum mechanical modeling of gate ca-pacitance and gate current in tunnel dielectric stack structures for nonvolatile memory application.” Appl. Phys., Vol. 95, No. 9, 1 May 2004 20. Tomasz Janik and Bogdan Majkusiak, “Analysis of the MOS tran-sistor based on the self-consistent solution to the Schrodinger and Poisson equations and on the local mobility model.” IEEE Transac-tions on Electron Devices, 1998,45(6):1263-1271 21. Ando Y, Itoh T, “Calculation of transmission tunneling current across arbitrary potential barriers.” Journal of Applied Physics, 1987, 61:1497~1502 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71792 | - |
dc.description.abstract | 本研究論文在探討利用射頻濺鍍系統製作氧化鋅/矽發光二極體元件與特性量測,分成三部分論述,第一部分是介紹射頻濺鍍系統原理與材料分析,第二部分是氧化鋅/矽發光二極體製作與電性和光學量測,第三部分是四種元件結構比較以及二氧化矽/n型矽介面反轉層穿隧電流模擬。首先,本文敘述利用射頻濺鍍系統成長氧化鋅,並且使用PL、XPS、UPS等量測技術,分析氧化鋅之成分。從PL結果得知晶體激發出中心位置在384nm,半高寬為26nm之紫外光,另一個中心位置在607nm,得知為氧化鋅之缺陷螢光頻譜,而由XPS、UPS材料分析得知氧化鋅/矽介面結構之能帶位置。吾人以上述射頻濺鍍系統製作氧化鋅/矽發光二極體元件,並量測其電壓—電流特性、電激發光頻譜、電容—電壓特性,將結果比較發現原生氧化層會影響ZnO/SiOx/p-Si、ZnO/p-Si發光二極體的導帶到價帶的躍遷以及透過I-V特徵曲線我們觀測到 ZnO/SiOx/n-Si在10mA發光的偏壓比起ZnO/SiOx/p-Si 10mA發光的偏壓值高出約1V,此驅動電壓之位移,不僅顯示n/p型Si之費米能級(Fermi level)差異,也說明白光機制乃來自ITO之電子與主動層本質缺陷之輻射結合。吾人利用電容電壓量測與SiOx/n-Si介面反轉層穿隧電流模擬計算少數載子的濃度分佈以及因穿隧效應所形成的穿隧電流密度。 | zh_TW |
dc.description.abstract | In this thesis, the fabrication and characterization of ZnO/Si light emitting diode (LED) using radio frequency RF sputtering are presented. First, the theory of RF Sputtering system followed by material analysis is introduced. Second, the ZnO/Si LED devices are fabricated and measured. Last, the results with four different structures are compared and SiOx/n-Si interface inversion layer tunnel current are simulated.From the PL analysis pumped by a 325nm He:Cd laser, a peak emission wavelength at 384nm with a full width at half maximum (FWHM) of 26nm are and a peak emission wavelength at 607nm are observed. From the XPS and UPS data analysis, we identify the material binding energy position and the calculate interface band alignment.The ZnO/Si LED was fabricated by the RF sputtering system. The measured of I-V characteristics, EL spectra, and C-V characteristics show that native oxide layer influence the excitation of ZnO/SiOx/p-Si and ZnO/p-Si EL spectra from conduction band to valence band. The turn-on voltages of devices on p-Si are found 1V smaller than those of the devices on n-Si, which shows the Fermi level difference of p-Si and n-Si, also describes the broad band white light emission is owing to the nonoradiation combination of the electrons from ITO with the intrinsic defect of ZnO thin film.With the measured C-V characteristic measurements, and the simulated transmission tunneling current across SiOx/n-Si potential barriers, the minority carrier concentration and the tunneling current density are calculated. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T06:09:58Z (GMT). No. of bitstreams: 1 ntu-107-R05941055-1.pdf: 2921947 bytes, checksum: 227915334d25e5aef47e6f71c1c08200 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | Chapter 1
緒論 1 1.1 前言 1 1.2 研究動機 3 1.3 論文內容概述 4 Chapter 2 射頻濺鍍系統 5 2.1 濺鍍系統 5 2.1.1 電漿 5 2.1.2 磁控濺鍍系統 6 2.1.3 射頻濺鍍系統 6 2.2 成長之材料分析 7 2.2.1 光致螢光(Photoluminescence,PL) 7 2.2.2 X光光電子能譜縱深分析(XPS Depth Profile) 9 2.2.3 紫外光光電子能譜(UPS) 10 2.2.4 介面能階校準(Interface Band Alignment) 11 2.2.5 X-射線繞射分析(X-ray Diffraction, XRD) 16 Chapter 3 異質接面發光二極體研製與特性分析 21 3.1 發光二極體設計概念 21 3.2 發光二極體元件製作 22 3.2.1 發光二極體元件之尺寸、形貌與標號 32 3.3 發光二極體量測架構 34 3.3.1 電流電壓與電激發光量測系統 34 3.3.2 電容電壓量測系統 35 3.4 元件電性與光學特性分析 36 3.4.1 電性量測結果 36 3.4.2 發光量測結果 39 Chapter 4 實驗結果比較與討論 42 4.1 元件結構比較 42 4.1.1 n-ZnO/SiOx/p-Si(Sample 1)、n-ZnO/p-Si(Sample 3)兩 種結構發光特性差異 42 4.1.2 n-ZnO/SiOx/p-Si(Sample 1)、n-ZnO/SiOx /n-Si(Sample 2)兩種結構電性差異 44 4.1.3 n-ZnO/SiOx/n-Si(Sample 2)、n-ZnO/n-Si(Sample 4)兩種結構發光特性差異 47 4.2 SiOx/n-Si 介面反轉層穿隧電流模擬 52 4.2.1 MOS結構中的表面電場效應和強反轉層形成 52 4.2.2 穿隧電流模型 54 Chapter 5 結論與未來展望 74 參考文獻 76 附錄 79 | |
dc.language.iso | zh-TW | |
dc.title | 射頻濺鍍氧化鋅在矽基板上之發光二極體特性研究 | zh_TW |
dc.title | Characterization of ZnO Light Emitting Diodes Fabricated on Si substrates by RF-Sputtering | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王維新(Way-Seen Wang),張亞中(Yia-Chung Chang),賴志明(Chih Ming Lai) | |
dc.subject.keyword | 射頻濺鍍,發光二極體, | zh_TW |
dc.subject.keyword | RF Sputtering,LED, | en |
dc.relation.page | 87 | |
dc.identifier.doi | 10.6342/NTU201804306 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-11-27 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 2.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。