Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71786
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉志文
dc.contributor.authorYU-JU LEEen
dc.contributor.author李育儒zh_TW
dc.date.accessioned2021-06-17T06:09:46Z-
dc.date.available2019-12-17
dc.date.copyright2018-12-17
dc.date.issued2018
dc.date.submitted2018-11-28
dc.identifier.citation[1] T. Takagi, Y. Yamakoshi, J. Baba, K. Uemura, and T. Sakaguchi, “A new algorithm of an accurate fault location for EHV/UHV transmission lines: part I – Fourier transformation method,” IEEE Trans. Power App. Syst., vol. PAS-100, no. 3, pp. 1316–1323, Mar. 1981.
[2] A. T. Johns and S. Jamali, “Accurate fault location technique for power transmission lines,” Proc. Inst. Elect. Eng. C, vol. 137, no 6, pp. 395-402, Nov. 1990.
[3] M. Kezunovic´, J. Mrkic´, and B. Perunicic´, “An accurate fault location algorithm using synchronized sampling,” Elect. Power Syst. Res. J., vol. 29, no. 3, pp. 161–169, May 1994.
[4] D. Novosel, D. G. Hart, E. Udren, and M. M. Saha, “Fault location using digital relay data,” IEEE Comput. Appl. Power, vol. 8, issue 3, pp. 45–50, Jul. 1995.
[5] M. Kezunovic´ and B. Perunicic, “Automated transmission line fault analysis using synchronized sampling at two ends,” IEEE Trans. Power Syst., vol. 11, no. 1, pp. 441–447, Feb. 1996.
[6] J. Miñambres, I. Zamora, A. Mazon, M. Zorrozua, and R. Alvarez-Isasi, “New technique, based on voltages, for fault location on three-terminal transmission lines,” Elect. Power Syst. Res. J., vol. 37-2, no. 2, pp. 143–151, May 1996.
[7] F. H. Magnago and A. Abur, “Fault location using wavelets,” IEEE Trans. Power Del., vol. 13, no. 4, pp. 1475-1480, Oct. 1998.
[8] Z. Q. Bo, G. Weller, and M. A. Redfern, “Accurate fault location technique for distribution system using fault-generated high-frequency transient voltage signals,” IEE Proc. Gener. Transm. Distrib., vol. 146, no. 1, pp. 73-79, Jan. 1999.
[9] Y. H. Lin, C. W. Liu, and C.S Chen, “A new PMU-based fault detection/location technique for transmission lines with consideration of arcing fault discrimination part I: theory and algorithm,” IEEE Trans. Power Del., vol. 19, no. 4, pp. 1587-1593, Oct. 2004.
[10] Y. H. Lin, C. W. Liu, and C.S Chen, “A new PMU-based fault detection/location technique for transmission lines with consideration of arcing fault discrimination part II: performance evaluation,” IEEE Trans. Power Del., vol. 19, no. 4, pp. 1594-1601, Oct. 2004.
[11] C. Y. Evrenosoglu and A. Abur, “Travelling wave based fault location for teed circuits,” IEEE Trans. Power Del., vol. 20, no. 2, pp. 1115–1121, Apr. 2005.
[12] C. S. Chen, C. W. Liu, and J. A. Jiang, “Application of combined adaptive Fourier filtering technique and fault detector to fast distance protection,” IEEE Trans. Power Del., vol. 21, no. 2, pp. 619-626, Apr. 2006.
[13] S. M. Brahma, “New fault-location method for a single multiterminal transmission line using synchronized phasor measurements,” IEEE Trans. Power Del., vol. 21, no. 3, pp. 1148–1153, Jul. 2006.
[14] Y. Liao and M.Kezunovic, “Optimal estimate of transmission line fault location considering measurement errors,” IEEE Trans. Power Del., vol. 22, no. 3, pp. 1335–1341, Jul. 2007.
[15] J. Izykowski and E. Rosolowski, “Accurate non-iterative fault location algorithm for three-terminal line,” ELECO 2009. International Conf. on, pp. I-154–I-158, 5-8 Nov. 2009.
[16] J. Izykowski, E. Rosolowski, P. Balcerek, M. Fulczyk, and M. M. Saha, “Accurate noniterative fault location algorithm utilizing two-end unsynchronized measurements,” IEEE Trans. Power Del., vol. 25, no. 1, pp. 72–80, Jan. 2010.
[17] R. Mardiana, H. A. Motairy, and C. Q. Su, “Ground fault location on a transmission line using high-frequency transient voltages,” IEEE Trans. Power Del., vol. 26, no. 2, pp. 1298-1299, Apr. 2011.
[18] J. A. Jiang, J. Z. Yang, Y. H. Lin, C. W. Liu, and J. C. Ma, “An Adaptive PMU based fault detection/location technique for transmission lines part I: theory and algorithm,” IEEE Trans. Power Del., vol. 15, no. 2, pp. 486-493, Apr. 2000.
[19] J. A. Jiang, J. Z. Yang, Y. H. Lin, C. W. Liu, and J. C. Ma, “An adaptive PMU based fault detection/location technique for transmission lines part II: PMU implementation and performance evaluation,” IEEE Trans. Power Del., vol. 15, no. 4, pp. 1136-1146, Oct. 2000.
[20] C. S. Chen, C. W. Liu, and J. A. Jiang, “A new adaptive PMU based protection scheme for transposed/untransposed parallel transmission lines,” IEEE Trans. Power Del., vol. 17, no. 2, pp. 395-404, Apr. 2002.
[21] J. A. Jiang, C. S. Chen, and C. W. Liu, “A new protection scheme for fault detection, direction discrimination, classification, and location in transmission lines,” IEEE Trans. Power Del., vol. 18, no. 1, pp. 34-42, Jan. 2003.
[22] C. S. Yu, C. W. Liu, S. L. Yu, and J. A. Jiang, “A new PMU-based fault location algorithm for series compensated lines,” IEEE Trans. Power Del., vol. 17, no. 1, pp. 33-46, Jan. 2002.
[23] C. S. Yu, “An unsynchronized measurements correction method for two-terminal fault-location problems,” IEEE Trans. Power Del., vol. 25, no. 3, pp. 1325-1333, Jul. 2010.
[24] C. W. Liu, T. C. Lin, C. S. Yu, and J. Z. Yang, “A Fault location technique for two-terminal multisection compound transmission lines using synchronized phasor measurements,” IEEE Trans. Smart Grid., vol. 3, no. 1, pp. 113-121, Mar. 2012.
[25] Y. H. Lin, C. W. Lin, and C.S Yu, “A new fault locator for three-terminal transmission lines-using two-terminal synchronized voltage and current phasors,” IEEE Trans. Power Del., vol. 17, no. 2, pp. 452-459, Apr. 2002.
[26] T. C. Lin, P. Y. Lin, and C. W. Liu, “An algorithm for locating faults in three-terminal multisection nonhomogeneous transmission lines using synchrophasor measurements,” IEEE Trans. Smart Grid., vol. 5, no. 1, pp. 38-50, Jan. 2014.
[27] C. W. Liu, K. P. Lien, C. S. Chen, and J. A. Jiang, “A universal fault location technique for N-terminal (N≧3) transmission lines,” IEEE Trans. Power Del., vol. 23, no. 3, pp. 1366-1373, Jul. 2008.
[28] 黃敏瑞,林子喬,楊俊哲,俞齊山,劉志文,“ 基於雲端運算之輸電網故障定位平台開發”,中華民國第36屆電力工程研討會,2015年12月。
[29] M. M. Saha, J. Izykowski, E. Rosolowski, Fault Location on Power Networks, London, U.K.: Springer London, 2010.
[30] IEEE Guide for Determining Fault Location on AC Transmission and Distribution Lines, IEEE Std. C37.114-2014, Dec. 2014.
[31] S. Das, S. Santoso, A. Gaikwad, and M. Patel, “Impedance-based fault location in transmission networks: theory and application,” IEEE Access, vol. 2, pp. 537-557, May 2014.
[32] T. Takagi, Y. Yamakoshi, M. Yamaura, R. Kondow, and T. Matsushima, “Development of a new type fault locator using the one-terminal voltage and current data,” IEEE Trans. Power App. Syst., vol. PAS-101, no. 8, pp. 2892–2898, Aug. 1982.
[33] L. Eriksson, M. M. Saha, and G. D. Rockefeller, “An accurate fault locator with compensation for apparent reactance in the fault resistance resulting from remote-end infeed,” IEEE Trans. Power App. Syst., vol. 104, no. 2, pp. 424-436, Feb. 1985.
[34] C. J. Lee, J. B. Park, J. R. Shin, and Z. M. Radojevié, “A new two-terminal numerical algorithm for fault location, distance protection, and arcing fault recognition,” IEEE Trans. Power. Syst., vol. 21, no. 3, pp. 1460-1462, Aug. 2006.
[35] J. Izykowski, E. Rosolowski, M. M. Saha, M. Fulczyk, and P. Balcerek, “A fault-location method for application with current differential relays of three-terminal lines,” IEEE Trans. Power Del., vol. 22, no. 4, pp. 2099-2107, Oct. 2007.
[36] A. Gopalakrishnan, M. Kezunovic, S. M. McKenna, and D. M. Hamai, “Fault location using the distributed parameter transmission line model,” IEEE Trans. Power Del., vol. 15, no. 4, pp. 1169-1174, Oct. 2000.
[37] P. Dutta, A. Esmaeilian, and M. Kezunovic, “Transmission-line fault analysis using synchronized sampling,” IEEE Trans. Power Del., vol. 29, no. 2, pp. 942-950, Apr. 2014.
[38] S. Zhang, H. Gao, and Y. Song, “A new fault-location algorithm for extra-high-voltage mixed lines based on phase characteristics of the hyperbolic tangent function,” IEEE Trans. Power Del., vol. 31, no. 3, pp. 1203-1212, Jun. 2016.
[39] Y. Liao, “Fault location for single-circuit line based on bus impedance matrix utilizing voltage measurements,” IEEE Trans. Power Del., vol. 23, no. 2, pp. 609-617, Apr. 2008.
[40] Y. Liao, and N. Kang, “Fault-location algorithms without utilizing line parameters based on the distributed parameter line model,” IEEE Trans. Power Del., vol. 24, no. 2, pp. 579-584, Apr. 2009.
[41] N. Kang, and Y. Liao, “Double-circuit transmission-line fault location with the availability of limited voltage measurement,” IEEE Trans. Power Del., vol. 27, no. 1, pp. 325-336, Jan. 2012.
[42] N. Kang and Y. Liao, “Double-circuit transmission-line fault location utilizing synchronized current phasors,” IEEE Trans. Power Del., vol. 28, no. 2, pp. 1040-1047, Apr. 2013.
[43] T. Funabashi, H. Otoguro, Y. Mizuma, L. Dube and A. Ametani, “Digital fault location for parallel double-circuit multi-terminal transmission lines,” IEEE Trans. Power Del., vol. 15, no. 2, pp. 531-537, Apr. 2000.
[44] S. M. Brahma, “New fault-location method for a single multiterminal transmission line using synchronized phasor measurements,” IEEE Trans. Power Del., vol. 21, no. 3, pp. 1148-1153, Jul. 2006.
[45] C. E. M. De Pereira and L. C. Zanetta, “Fault location in multitapped transmission lines using unsynchronized data and superposition theorem,” IEEE Trans. Power Del., vol. 26, no. 4, pp. 2081-2089, Oct. 2011.
[46] Q. Jiang, B. Wang, and X. Li, “An efficient PMU-based fault-location technique for multiterminal transmission lines,” IEEE Trans. Power Del., vol. 29, no. 4, pp. 1675-1682, Aug. 2014.
[47] T. Wu, C. Y. Chung, I. Kamwa, J. Li, and M. Qin, “Synchrophasor measurement-based fault location technique for multi-terminal non-homogeneous transmission lines,” IET Gener. Transm. Distrib., vol. 10, Iss. 8, pp. 1815-1824, Mar. 2016.
[48] IEEE Standard for Synchrophasor Measurements for Power System, IEEE std C37.118.1-2001, Dec. 2011.
[49] A. G. Phadke and J. S. Thorp, Synchronized phasor measurements and their applications, New York: Springer, 2008.
[50] A. G. Phadke and J. S. Thorp, Computer relaying for power systems, New York: John Wiley & Sons, 1988.
[51] V, A. Centeno, “Mimic circuit simulation in real time,” Master thesis, Virginia Polytechnic Institute and State University, 1988.
[52] G. Benmouyal, “Removal of DC-Offset in Current Waveforms Using Digital Mimic Filtering,” IEEE Trans. Power Del., vol. 10, no. 2, pp. 624-630, Apr. 1995.
[53] Y. H. Lin, “Synchronized phasor measurement technique and its applications to transmission line digital protection,” Ph. D. Dissertation, Department of Electrical Engineering, National Taiwan University, 2001.
[54] C. S. Chen, “Design of digital relaying and fault location algorithms for transmission lines based on synchronized measuring and adaptive filtering techniques,” Ph. D. Dissertation, Department of Electrical Engineering, National Taiwan University, 2003.
[55] K. P. Lien, “A study on PMU based fault location algorithms for transmission networks,” Ph. D. Dissertation, Department of Electrical Engineering, National Taiwan University, 2005.
[56] J. D. Glover, M. S. Sarma, and T. J. Overbye, Power System Analysis and Design, 5th ed. Boston, MA, USA: Cengage Learning, 2011.
[57] M. Abe, N. Otsuzuki, T. Emura, and M.Takeuchi, “Development of a new fault location system for multi-terminal single transmission lines,” IEEE Trans. Power Del., vol. 10, no. 1, pp. 159-168, Jan. 1995.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71786-
dc.description.abstract本論文針對多端複合線徑之輸電線路以及三端複合線徑之輸電線路架構其中一端之匯流排斷路器開路之情況,分別提出兩套以同步相量量測為基礎之故障定位演算法。其中,同步相量量測資料來自安裝於各匯流排上之相量量測單元(Phasor Measurement Unit, PMU)或智慧型電子裝置(Intelligent Electronic Device, IED)。此兩種故障定位演算法概述如下。
首先,多端複合線徑之輸電線路故障定位演算法係以本研究室過去所提出之雙端輸電線路故障定位演算法為基礎,藉由判斷出故障所在之分歧線(Branch),進而計算出故障位置。本演算法利用圖學理論(Graph Theory)的概念以兩個拓墣(topology)矩陣來表示各匯流排(buses)與各引接點(Junction points)間之連結關係。依據此連結關係依序求出各引接點之代表電壓/電流相量,判斷出故障所在之分歧線。為了有效提升故障定位技術之精準度,本論文亦提出一最佳化故障定位指標計算視窗可有效降低因直流衰減(DC decay)以及電弧現象(Arcing phenomenon)造成之定位誤差。
其次,本論文針對三端複合輸電線路其中一端之匯流排斷路器開路之情況進行討論。此故障定位方法係利用雙端輸電線路故障定位演算法來判斷故障所在之分歧線。當故障發生在未停用之輸電線上時,由雙端輸電線路故障定位演算法求得之故障定位指標將可用來計算故障發生位置。然而,當故障發生於停用之輸電線上時,該故障定位指標會判斷故障發生於線路引接點(Junction point) 上。此時,本研究利用線路引接點上之視在電抗(Apparent reactance)以及相序網路提出一進階故障定位指標(Advanced fault location index)以計算發生在停用之輸電線路上之故障點位置。
本論文提出之故障定位演算法以及最佳化故障定位指標計算視窗經MATLAB/Simulink進行模擬後證實本研究提出之方法均能有效求出故障點之精確位置。此外,本研究亦利用台電輸電線路事故資料進行故障定位指標計算視窗之效能驗證。結果證實,利用本論文提出之故障定位指標計算視窗求得之故障點位置,其計算誤差遠低於目前建置於台灣輸電線路上數位保護電驛所提供之故障點資訊。
zh_TW
dc.description.abstractIn this dissertation, there are two synchrophasor-based fault location techniques for multi-terminal nonhomogeneous transmission lines and three-terminal nonhomogeneous transmission lines with one off-service line branch proposed. The synchronized voltage and current data sets are provided by intelligent electronic devices (IEDs) or phasor measurement units (PMUs) which are deployed on buses. These two fault location methods are explained briefly as below.
For multi-terminal nonhomogeneous transmission lines, the method uses two-terminal fault location technique as the basis to locate the exact fault point by distinguishing the faulty line branch in multi-terminal nonhomogeneous transmission lines. The graph theory is adopted to represent the connection relationship among buses and junction points. Based on the connection relationship, the represented voltage and current phasors of junction points can be obtained orderly so as to identify the faulty line branch. For enhancing accuracy, an appropriate calculation data window is also proposed to mitigate the undesirable influence caused by DC decay and arcing phenomenon.
This three-terminal nonhomogeneous transmission lines with one off-service line branch is also taken into account in this dissertation. This algorithm also uses two-terminal fault location technique to identify the faulty line branch and locate the fault point when a fault exist on one of in-service line branches. Contrarily, the two-terminal fault location technique only can point out that a fault exists at the junction point even if the real fault point is on the off-service line branch. Therefore, an advanced fault location index is proposed by using the apparent reactance of the junction point P and sequence network to locate the exact fault point which occurs on the off-service line branch.
Two proposed fault location techniques and the appropriate calculation data window are demonstrated by MATLAB/Simulink, the results show that proposed methods can calculate the exact fault point within minor calculation error regardless of the different fault types and fault resistance. The result of the proposed calculation data window is also verified by realistic cases of TPC (Taiwan Power Company), the calculation error derived by using the proposed calculation data window is lower than the results which provided by installed digital relays apparently.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:09:46Z (GMT). No. of bitstreams: 1
ntu-107-D04921010-1.pdf: 2006643 bytes, checksum: adfb386e1de37a3f51c7e00635b2ec0a (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents中文摘要 I
Abstract III
Contents V
List of Figures IX
List of Tables XIII
Chapter 1 Introduction 1
1-1 Motivations 1
1-2 Review of previous techniques of fault location developed by NTUEE 3
1-3 Literature Survey 8
1-3.1 Single-ended impedance-based fault location techniques 9
1-3.2 N-terminal (N≧2) impedance-based fault location techniques 10
1-4 Contributions 12
1-5 Dissertation organizations 14
Chapter 2 Review of the synchrophasor-based fault location technique for two-terminal transmission lines 19
2-1 Phasor Measurement Units (PMUs) 19
2-1.1 Global positioning system (GPS) 20
2-1.2 Configuration of PMU 20
2-2 Signal processing 22
2-2.1 Mimic filter 22
2-2.2 DFT technique 26
2-3 The synchrophasor-based fault location technique for two-terminal transmission lines 27
Chapter 3 Fault Location Method for multi-Terminal Nonhomogeneous Transmission Lines 35
3-1 Fault location technique for multi-terminal nonhomogeneous transmission lines 35
3-1.1 Matrices representation for multi-terminal nonhomogeneous transmission lines 36
3-1.2 Derivation of the represented voltage and current sets for every junction point 40
3-1.3 The faulty line branch identification 45
3-1.4 Locate the exact fault point 48
3-1.5 Realistic considerations 51
3-2 The appropriate data calculation window for fault location calculation to mitigate influence caused by DC decay and arcing phenomenon 53
3-3 Performance evaluation 62
3-3.1 Simulation results 62
3-3.2 Realistic utility cases 65
Chapter 4 Fault Location Method for Three-Terminal Nonhomogeneous Transmission Lines with One Off-Service Line Branch 74
4-1 The proposed fault location method 75
4-1.1 A fault occurs on one of in-service line branches 75
4-1.2 A fault occurs on the off-service line branches or at the junction point P 76
4-1.3 Fault locator for a three-terminal nonhomogeneous transmission line with one off-service line branch 85
4-2 Performance evaluation 87
4-2.1 A fault occurs on the in-service line branch 88
4-2.2 A fault occurs on the off-service line branch 91
Chapter 5 Conclusions and Future Works 98
5-1 Conclusions 98
5-2 Future works 100
References 103
Publication List 110
dc.language.isoen
dc.title基於同步相量之多端複合線徑輸電線路故障定位演算法設計zh_TW
dc.titleDesign of Synchrophasor-Based Fault Location Algorithm for Multi-Terminal Nonhomogeneous Transmission Linesen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree博士
dc.contributor.oralexamcommittee張簡樂仁,黃世杰,陳耀銘,朱家齊,陳昭榮
dc.subject.keyword故障定位,相量量測單元,智慧電子裝置,網路拓樸,zh_TW
dc.subject.keywordFault location,phasor measurement units (PMUs),intelligent electronic devices (IEDs),network topology,en
dc.relation.page110
dc.identifier.doi10.6342/NTU201804308
dc.rights.note有償授權
dc.date.accepted2018-11-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
1.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved