請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71778完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳宏宇 | |
| dc.contributor.author | Chung-Shu Yang | en |
| dc.contributor.author | 楊仲舒 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:09:29Z | - |
| dc.date.available | 2020-12-20 | |
| dc.date.copyright | 2018-12-20 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-12-04 | |
| dc.identifier.citation | 中文部分:
中央氣象局 (2010-2016) 氣候資料年報,行政院交通部中央氣象局。 何春蓀 (1975) 台灣地質概論:台灣地質圖說明書,經濟部中央地質調查所,共164頁。 呂名翔 (2007) 新武呂溪流域的山崩與輸砂量在地震與颱風事件中的相對應關係,國立台灣大學地質科學系碩士論文,共113頁。 林冠瑋 (2005) 陳有蘭溪流域的山崩作用在颱風及地震事件中與河道輸砂量之相對關係,國立台灣大學地質科學系碩士論文,共130頁。 施尊穎 (2009) 台東鹿野溪流域之地層滑動與河川化性在卑南地震後之相關性,國立台灣大學地質科學系碩士論文,共108頁。 許家銘 (2008) 濁口溪流域的地表作用與地質環境間的相關性,國立台灣大學地質科學系碩士論文,共106頁。 陳文山 (2016) 台灣地質概論,中華民國地質學會,共204頁。 陳宜徽 (2015) 陳有蘭溪流域山崩與植生狀態在颱風與地震事件中之對應關係,國立台灣大學地質科學系碩士論文,共149頁。 陳肇夏 (1998) 台灣的變質岩,經濟部中央地質調查所,共356頁。 經濟部中央地質調查所 (2000) 台灣二十五萬分之一地質圖,經濟部中央地質調查所。 經濟部水利署 (2004-2016) 台灣水文年報總冊,行政院經濟部水利署。 謝兆申、王明果 (1991) 台灣地區主要土類圖輯,國立中興大學土壤調查試驗中心,共343頁。 魏倫瑋 (2009) 台南菜寮溪河道的變化與其集水區流域之地層滑動及輸砂量之關係,國立台灣大學地質科學系碩士論文,共116頁。 英文部分: Akhtar, M.S. (1989) Soil mineralogy and potassium quantity/intensity relations in three alluvial soils from Pakistan. Ph.D. Thesis, Office of graduate college of Texas A & A University, U.S.A. Akhtar, M.S. and Dixon, J.B. (2009) Mineralogical characteristics and potassium quantity/intensity relation in three Indus River basin soils. Asian Journal of Chemistry, 21, 3427-3442. Allan, J.D. (1995) Stream Ecology: Structure and Function of Running Waters. Chapman and Hall, New York. Anderson, S.P. and Dietrich, W.E. (2001) Chemical weathering and runoff chemistry in a steep headwater catchment. Hydrological Processes, 15, 1791-1815. Anderson, S.P., Dietrich, W.E. and Brimhall Jr., G.H. (2002) Weathering profiles, mass-balance analysis, and rate of solute loss: Linkages between weathering and erosion in a small steep catchment. Geological Society of America Bulletin, 114, 1143-1158. Angelier. J., Barrier, E. and Chu, H.T. (1986) Plate collision and paleostress trajectories in a fold-thrust belt: The Foothills of Taiwan. Tectonophysics, 125, 161-178. Au, S.W.C. (1993) Rainfall and slope failure in Hong Kong. Engineering Geology, 36, 141-147. Baldwin, A.D. (1971) Contribution of atmospheric chloride in water from selected coastal streams of central California. Water Resources Research, 7, 1007-1012. Barton, N. (1976) The shear strength of rock and rock joints. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 13, 255-279. Bennett, P.C., Hiebert, F.K. and Roberts Rogers, J. (2000) Microbial control of mineral ground-water equilibria: macroscale to microscale. Hydrogeology Journal, 8, 47-62. Bird, M.I., Robinson, R.A.J., Oo, N.W., Aye, M.M., Lu, X.X., Higgitt, D.L., Swe, A., Tun, T., Win, S.L., Aye, K.S., Win, K.M.M. and Hoey, T.B. (2008) A preliminary estimate of organic carbon transport by the Ayeyarwady (Irrawaddy) and Thanlwin (Salween) rivers of Myanmar. Quaternary International, 186, 113-122. Brand, E.W. (1981) Some thoughts on rain-induced slope failures. Proc. 10th Int. Conf. on Soil Mechanics and Foundation Engineering, Stockholm, 3, 373-376. Caissie, D., Pollock, T.L. and Cunjak, R.A. (1996) Variation in stream water chemistry and hydrograph separation in a small drainage basin. Journal of Hydrology, 178, 137-157. Calmels, D., Galy, A., Hovius, N., Bickle, M., West, A.J., Chen, M.-C. and Chapman, H. (2011) Contribution of deep groundwater to the weathering budget in a rapidly eroding mountain belt, Taiwan. Earth and Planetary Science Letters, 303, 48-58. Carey, A.E., Kao, S.-J., Hicks, D.M., Nezat, C.A. and Lyons, W.B. (2006) The geochemistry of rivers in tectonically active areas of Taiwan and New Zealand. Geological Society of America, 398, 339-351. Chen, C.W., Saito, H. and Oguchi, T. (2015) Rainfall intensity–duration conditions for mass movements in Taiwan. Progress in Earth and Planetary Science, 2, 14. Chen, H. and Hawkins, A.B. (2009) Relationship between earthquake disturbance, tropical rainstorms and debris movement: an overview from Taiwan. Bulletin of Engineering Geology and the Environment, 68, 161-186. Chen, J.S., Wang, F.Y., Xia, X.H. and Zhang, L.T. (2002) Major element chemistry of the Changjiang (Yangtze River). Chemical Geology, 187, 231-255. Chen, T.-C., Yen, M.-C., Hsieh, J.-C. and Arritt, R.W. (1999) Diurnal and seasonal variations of the rainfall measured by the automatic rainfall and meteorological telemetry system in Taiwan. Bulletin of the American Meteorological Society, 80, 2299-2312. Chetelat, B., Liu, C.-Q., Zhao, Z.Q., Wang, Q.L., Li, S.L., Li, J. and Wang, B.L. (2008) Geochemistry of the dissolved load of the Changjiang Basin rivers: Anthropogenic impacts and chemical weathering. Geochimica et Cosmochimica Acta, 72, 4254-4277. Chuang, S.J., Chen, H., Lin, G.W., Lin, C.W. and Chang, C.P. (2009) Increase in basin sediment yield from landslides in storms following major seismic disturbance. Engineering Geology, 103, 59–65. Clark, M. B., Fisher, D. M. and Lu, C. Y. (1992) Strain variations in the Eocene and older rocks exposed along the Central and Southern Cross-Island Highways, Taiwan. Acta Geologica Taiwanica, 30, 1-10. Cohn, T.A. (1995) Recent advances in statistical methods for the estimation of sediment and nutrient transport in rivers. Reviews of Geophysics, 33, 1117-1123. Corominas, J., Moya, J. and Hürlimann, M. (2002) Landslide rainfall triggers in the Spanish eastern Pyrenees. 4th EGS Plinius Conference “Mediterranean Storms.” Mallorca, Spain. Crespi, J.M, Chan, Y.-C. and Swaim, M. S. (1996) Synorogenic extension and exhumation of the Taiwan hinterland. Geology, 24, 247-250. Crosta, G. (1998) Regionalization of rainfall thresholds: an aid to landslide hazard evaluation. Environmental Geology, 35, 131-145. Dadson, S.J. (2004), Erosion of an active mountain belt. Ph.D. Thesis, Department of Earth Sciences, University of Cambridge, Cambridge, U.K. Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Lin, J.C., Hsu, M.L., Lin, C.W., Horng, M.J., Chen, T.C., Miliman, J. and Stark, C.P. (2004) Earthquake-triggered increase in sediment delivery from an active mountain belt. Geology, 32, 733-736. Dadson, S.J., Hovious, N., Pegg, S., Dade, W.B., Horng, M.J. and Chen, H. (2005) Hyperpycnal river flows from an active mountain belt. Journal of Geophysical Research, 110, 1-38. Dai, F.C., Xu, C., Yao, X., Xu, L., Tu, X.B. and Gong, Q.M. (2011) Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China. Journal of Asian Earth Sciences, 40, 883-895. Dixon, J.C. and Thorn, C.E. (2005) Chemical weathering and landscape development in mid-latitude alpine environments. Geomorphology, 67, 127-145. Dupré, B., Gaillardet, J., Rousseau, D. and Allègre, C.J. (1996) Major and trace elements of river-borne material: The Congo Basin. Geochimica et Cosmochimica Acta, 60, 1301-1321. Evans, C. and Davies, T.D. (1998) Causes of concentration/dischargehysteresis, and its potential as a tool for analysis of episodehydrochemistry. Water Resources Research, 34, 129-137. Faure, G. (1998) Principles and Applications of Geochemistry. Prentice Hall, New Jersey. Fernandes, A.M., da Conceição, F.T., Spatti, J.E.P., Sardinha, D. de S. and Mortatti, J. (2016) Chemical weathering rates and atmospheric/soil CO2 consumption of igneousand metamorphic rocks under tropical climate in southeastern Brazil. Chemical Geology, 443, 54-66. Ferro, V. and Minacapilli, M. (1995) Sediment delivery processes at basin scale. Hydrological Sciences Journal, 40, 703-717. Filippelli, G.M. (1997) Intensification of the Asian monsoon and a chemical weathering event in the late Miocene-early Pliocene: Implications for late Neogene climate change. Geology, 25, 27-30. Filippelli, G.M. and Souch, C. (1999) Effects of climate and landscape development on the terrestrial phosphorus cycle. Geology, 27, 171-174. Fisher, D.M., Willett, S., Yeh, E.-C. and Clark, M.B. (2007) Cleavage fronts and fans as reflections of orogen stress and kinematics in Taiwan. Geology, 35, 65-68. Fuller, C.W., Willett, S.D., Hovius, N. and Slingerland, R. (2003) Erosion rates for Taiwan mountain basins: New determinations from suspended sediment records and a stochastic model of their temporal variation. The Journal of Geology, 111, 71-87. Gabet, E.J. and Mudd, S.M. (2009) A theoretical model coupling chemical weathering rates with denudation rates. Geology, 37, 151-154. Gaillardet, J., Dupré, B. and Allègre, C.J. (1999b) Geochemistryof large river suspended sediments: Silicate weathering or recycling tracer? Geochimica et Cosmochimica Acta, 63,4037-4051. Gaillardet, J., Dupré, B., Louvat, P. and Allègre, C.J. (1999a) Global silicate weathering and CO2 consumption rates deduced from the chemistry of the large rivers. Chemical Geology, 159, 3-30. Gao, Q., Tao, Z., Huang, X., Nan, L., Yu, K. and Wang, Z. (2009) Chemical weathering and CO2 consumption in the Xijiang River basin, South China. Geomorphology, 106, 324-332. Gibbs, R. J. (1970) Mechanisms controlling world water chemistry. Science, 170, 1088-1090. Godsey, S.E., Kirchner, J.W. and Clow, D.W. (2009) Concentration–discharge relationships reflect chemostatic characteristics of US catchments. Hydrological Processes, 23, 1844-1864. Goldsmith, S.T., Carey, A.E., Lyons, B.W., Kao, S.-J., Lee, T.-Y. and Chen, J. (2008) Extreme stormevents, landscape denudation, and carbon sequestration: Typhoon Mindulle, Cho-shui River, Taiwan. Geology, 36, 483-486. Goodbred, S.L. and Kuehl, S.A. (2000) Enormous Ganges–Brahmaputra sediment discharge during strengthened early Holocene monsoon. Geology, 28, 1083-1086. Goudie, A.S. and Viles, H.A. (2012) Weathering and the global carbon cycle: geomorphological perspectives. Earth-Science Reviews ,113, 59-71. Gurumurthy, G., Balakrishna, K., Riotte, J., Braun, J.-J., Audry, S., Shankar, H. and Manjunatha, B. (2012) Controls on intense silicate weathering in a tropical river, southwestern India. Chemical Geology, 300, 61-69. Guzzetti, F., Peruccacci, S., Rossi, M. and Stark, C.P. (2008) The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides, 5, 3-17. Hagedorn, B. and Cartwright, I. (2009) Climatic and lithologic controls on the temporal and spatial variability of CO2 consumption via chemical weathering: an example from the Australian Victorian Alps. Chemical Geology, 260, 234-253. Han, G., Tang, Y. and Xu, Z. (2010) Fluvial geochemistry of rivers draining karst terrain in southwest China. Journal of Asian Earth Sciences, 38,65-75. Harp, E.L. and Wilson, R.C. (1995) Shaking intensity thresholds for rock falls and slides: evidence from 1987 Whittier Narrows and Superstition Hills earthquake strong-motion records. Bulletin of the Seismological Society of America, 85, 1739-1757. Hicks, D.M., Hill, J. and Shankar, U. (1996) Variation of suspended sediment yields around New Zealand: the relative importance of rainfall and geology. In: Walling, D.E., Webb, B.W. (Eds.), Erosion and Sediment Yield: Global and Regional Perspectives, IAHS Publication, 236, 149-156. Hilley, G.E., Chamberlain, C.P., Moon, S., Porder, S. and Willett, S.D. (2010) Competition between erosion and reaction kinetics in controlling silicate-weathering rates. Earth and Planetary Science Letter, 293, 191-199. Hotchkiss, S., Vitousek, P.M., Chadwick, O.A. and Price, J. (2000) Climate cycles, geomorphological change, and the interpretationof soil and ecosystem development. Ecosystems, 3, 522-533. Hovius, N., Stark, C.P., Chu, H.T. and Lin, J.C. (2000) Supply and removal of sediment in a landslide-dominated mountain belt: Central Range, Taiwan. The Journal of Geology, 108, 73-89. Huang, J.C., Lee, T.Y. and Lee, J.Y. (2014) Observed magnified runoff response to rainfall intensification under global warming. Environmental Research Letters, 9, 1-7. Imeson, A. C. and Verstraten, J. M. (1981) Suspended solids concentration and river water chemistry. Earth Surface Processes and Landforms, 6, 251-263. ISRM (1981) Rock characterization testing & monitoring: ISRM suggested methods, Pergamon, 1-121. Jacobson, A.D., Blum, J.D., Chamberlain, C.P., Craw, D. and Koons, P.O. (2003) Climatic and tectonic controls on chemical weathering in the New Zealand, Southern Alps. Geochimica et Cosmochimica Acta, 67, 29-46. Jha, P.K., Tiwari J., Singh U.K., Kumar M. and Subramanian V. (2009) Chemical weathering and associated CO2 consumption in the Godavari river basin, India. Chemical Geology, 264, 364-374. Kao, S.J., Chan, S.C., Kuo, C.H. and Liu, K.K. (2005) Transport-dominated sediment loading in Taiwanese rivers: a case study from the Ma-an Stream. The Journal of Geology, 113, 217-225. Keefer, D.K. (1984) Landslides caused by earthquakes. Geological Society of America Bulletin, 95, 406-421. Keefer, D.K. (2000) Statistical Analysis of an Earthquake-induced Landslide Distribution – the 1989 Loma Prieta, California Event. Engineering Geology, 58, 213-249. Khazai, B. and Sitar, N. (2003) Evaluation of factors controlling earthquake-induced landslides caused by Chi–Chi earthquake and comparison with the Northridge and Loma Prieta events. Engineering Geology, 71, 79-95. Kump, L.R., Brantley, S.L. and Arthur, M.A. (2000) Chemical weathering, atmospheric CO2, and climate. Annual Review of Earth and Planetary Sciences, 28, 611-667. Langlois, J.L. and Mehuys, G.R. (2003) Intra-storm study of solute chemical Composition of overland flow water in two agricultural fields. Journal of Environmental Quality, 32, 2301-2310. Lee, T. Y., Hong N. M., Shih Y. T., Huang J. C. and Kao S. J. (2015) The sources of streamwater to small mountainous rivers in Taiwan during typhoon. Environmental Science and Pollution Research. Lee, C.T., Huang, C.C., Lee, J.F., Pan, K.L., Lin, M.L. and Dong, J.J. (2008) Statistical approach to earthquake-induced landslide susceptibility. Engineering Geology, 100, 43-58. Li, J.Y. and Zhang, J. (2005) Chemical weathering processes and atmospheric CO2 consumption of Huang He River and Chang Jiang River basins. Chinese Geographical Science, 15, 16-21. Li, P., Wu, J., Qian, H., Zhang, Y., Yang, N., Jing, L. and Yu, P. (2016) Hydrogeochemical characterization of groundwater in and around a wastewater irrigated forest in the southeastern edge of the Tengger Desert. Exposure and Health, 8, 331-348. Li, Y.H. (1976) Denudation of Taiwan island since the Pliocene epoch. Geology, 4, 105-107. Lin, C.W., Shieh, C.L., Yuan, B.D., Shieh, Y.C., Liu, S.H. and Lee, S.Y. (2003) Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows: example from the Chenyulan River watershed, Nantou, Taiwan. Engineering Geology, 71, 49-61. Lin, G.W., Chen, H., Chen, Y.H. and Horng, M.J. (2008) Influence of typhoons and earth- quakes on rainfall-induced landslides and suspended sediments discharge. Engineering Geology, 97, 32-41. Lin, G.W., Chen, H., Shih, T.Y. and Lin, S. (2012) Various links between landslide debris and sediment flux during earthquake and rainstorm events. Journal of Asian Earth Science, 54, 41-48. Liu, J.T., Kao, S.-J., Huh, C.-A. and Hung, C.-C. (2013) Gravity flows associated with flood events and carbon burial: Taiwan as instructional source area. Annual Reviews of Marine Science, 5, 47-68. Manaka, T., Otani, S., Inamura, A., Suzuki, A., Aung, T., Roachanakanan, R., Ishiwa, T. and Kawahata, H. (2015) Chemical weathering and long‐term CO2 consumption in the Ayeyarwady and Mekong river basins in the Himalayas. Journal of Geophysical Research: Biogeosciences, 120, 1165-1175. Martin, J.-M. and Meybeck, M. (1979) Elemental mass-balance of material carried by major world rivers. Marine Chemistry, 7, 173-206. Martinelli, G., Dadomo, A., Italiano, F., Petrini, R. and Slejko, F.F. (2017) Geochemical monitoring of the 2012 Po Valley seismic sequence: a review and update. Chemical Geology, 469, 147-162. Meybeck, M. (1987) Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 287, 401-428. Meybeck, M. (2003) Global occurrence of major elements in rivers. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry, 5, Elsevier, Amsterdam, 207-223. Milliman, J.D. and Kao, S.J. (2005) Hyperpycnal discharge of fluvial sediment to the ocean: impact of Super-Typhoon Herb (1996) on Taiwanese rivers. The Jorrnal of Geology, 113, 503-516. Moon, S., Huh, Y., Qin, J. and van Pho, N. (2007) Chemical weathering in the Hong (Red) River basin: rates of silicate weathering and their controlling factors. Geochimica et Cosmochimica Acta, 71, 1411-1430. Moquet, J.-S., Crave, A., Viers, J., Seyler, P., Armijos, E., Bourrel, L., Chavarri, E., Lagane, C., Laraque, A., Casimiro, W.S.L., Pombosa, R., Noriega, L., Vera, A. and Guyot, J.-L. (2011) Chemical weathering and atmospheric/soil CO2 uptake in the Andean and Foreland Amazon basins. Chemical Geology, 287, 1-26. Négrel, P., Allègre, C.J., Dupré, B. and Lewin, E. (1993) Erosion sources determined by inversion of major and trace element ratios in river water: The Congo Basin case. Earth and Planetary Science Letters, 120, 59-76. Prosser, I.P., Rustomji, P., Young, W.J., Moran, C.J. and Hughes, A. (2001) Constructing river basin sediment budgets for the National Land and Water Audit. CSIRO Land and Water Technical Report 15/01. Qin, J., Huh, Y., Edmond, J.M., Du, G. and Ran, J. (2006) Chemical and physical weathering in the Min Jiang, a headwater tributary of the Yangtze River. Chemical Geology, 227, 53-69. Ran, L., Lu, X.X., Sun, H., Han, J. and Yu, R (2015) Chemical denudation in the Yellow River and its geomorphological implications. Geomorphology, 231,83-93. Riekerk, H. (1971) The mobility of phosphorus, potassium and calcium in a forest soil. Soil Science Society of America Journal, 35, 350-356. Rodríguez, C.E., Bommer, J.J. and Chandler, R.J. (1999) Earthquake-induced Landslides: 1980-1997. Soil Dynamics and Earthquake Engineering, 18, 325-346. Roy, S., Gaillardet, J. and Allègre, C.J. (1999) Geochemistry of dissolved and suspended loads of the Seine river, France: anthropogenic impact, carbonate and silicate weathering. Geochimica et Cosmochimica Acta, 63, 1277-1292. Ryu, J.-S., Lee, K.-S., Chang, H.-W. and Shin, H.S. (2008) Chemical weathering of carbonates and silicates in the Han River basin, South Korea. Chemical Geology, 247, 66-80. Sajil Kumar, P. J. and James, E. J. (2016) Identification of hydrogeochemical processes in the Coimbatore district, Tamil Nadu, India. Hydrological Sciences Journal, 61, 719-731. Salmon, C.D., Walter, M.T., Hedin, L.O. and Brown, M.G. (2001) Hydrological controls on chemical export from an undisturbedold-growth Chilean forest. Journal of Hydrology, 253, 69-80. Selvaraj, K. and Chen, C.-T.A. (2006) Moderate chemical weathering of subtropical Taiwan: constraints from solid-phase geochemistry of sediments and sedimentary rocks. The Journal of Geology, 114, 101-116. Stallard, R.F. and Edmond, J.M. (1983) Geochemistry of the Amazon: II, the influence of the geology and weathering environment in the dissolved load at the time of the peak discharge. Journal of Geophysical Research, 86, 9844-9858. Stewart, B.W., Capo, R.C. and Chadwick, O.A. (2001) Effects of rainfall on weathering rate, base cation provenance, and Sr isotope composition of Hawaiian soils. Geochimica et Cosmochimica Acta, 65, 1087-1099. Subramanian, V. (1979) Chemical and suspended sediment characteristics of rivers of India. Journal of Hydrology, 44, 37-55. Tazaki, K. (2006) Green-tuff landslide areas are beneficial for rise nutrition in Japan. Anais da Acsdemia Brasileira De Ciências, 78, 749-763. Thomas, R.B. and Lewis, J. (1995) An evaluation of flow-stratified sampling for estimating suspended sediment loads. Journal of Hydrology, 170, 27-45. Varnes, D.J. (1978) Slope movements, type and processes. In: Schuster, R. L., Krizek, R. J. (Eds.), Transportation Research Board, National Academy Sciences, Washington, 11-33. Vitousek, P.M. and Farrington, H. (1997) Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochemistry, 37, 63-75. Vitousek, P.M., Chadwick, O.A., Crews, T.E., Fownes, J., Hendricks, D.M. and Herbert, D. (1997) Soil and ecosystem development across the Hawaiian Islands. GSA Today, 7, 1-8. Walker, T.W. and Syers, J.K. (1976) The fate of phosphorus during pedogenesis. Geoderma, 15, 1-19. Walling, D.E. (1977) Assessing the accuracy of suspended sediment rating curves for a small basin. Water Resources Research, 13, 531-538. Wang, L., Zhang, L., Cai, W.-J., Wang, B. and Yu, Z. (2016) Consumption of atmospheric CO2 via chemical weathering in the Yellow River basin: The Qinghai–Tibet Plateau is the main contributor to the high dissolved inorganic carbon in the Yellow River. Chemical Geology, 430, 34-44. Wang, L.J., Hsia, Y.J., King, H.B., Harrison, R.B., Liu, C.B., Hwong, J.L. and Liu, C.B. (1996) Storm solute changes in the Fushan forested watershed, NE Taiwan. Journal of Chinese Soil and Water Conservation, 27, 97-105. Wesley, L.D. (2011) Stability of slopes in residual soils, Obras y Proyectos, 10, 47-61. White, A.F., Bullen, T.D., Vivit, D.V., Schulz, M.S. and Clow, D.W. (1999) The role of disseminated calcite in the chemical weathering of granitoid rocks. Geochimica et Cosmochimica Acta, 63, 1939-1953. Willett, S.D., Fisher, D., Fuller, C., Yeh, E.C. and Lu, C.Y. (2003) Erosion rates and orogenic wedge kinematics in Taiwan inferred from apatite fission track thermochronometry. Geology, 31, 945-948. Wu, C.H., Chen, S.C. and Chou, H.T. (2011) Geomorphologic characteristics of catastrophic landslides during typhoon Morakot in the Kaoping Watershed, Taiwan. Engineering Geology, 123, 13-21. Wu, L., Huh, Y., Qin, J., Du, G. and van Der Lee, S. (2005) Chemical weathering in the Upper Huang He (Yellow River) draining the eastern Qinghai–Tibet Plateau. Geochimica et Cosmochimica Acta, 69, 5279-5294. Wu, W., Xu, S., Yang, J. and Yin, H. (2008) Silicate weathering and CO2 consumption deduced from the seven Chinese rivers originating in the Qinghai–Tibet Plateau. Chemical Geology, 249, 307-320. Wu, W., Zheng, H., Yang, J., Luo, C. and Zhou, B. (2013) Chemical weathering, atmospheric CO2 consumption, and the controlling factors in a subtropical metamorphic-hosted watershed. Chemical Geology, 356, 141-150. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71778 | - |
| dc.description.abstract | 本研究主要藉由和平溪和新武呂溪兩集水區流域於2012年至2016年之河水化性,以探討風化作用在時間和空間上之分佈關係,並且說明其可能影響的外部環境因子。台灣位處於亞洲季風氣候區,乾濕季節分明,造成不同程度上的化學風化作用,透過量測河水當中之溶解態離子,包括Na+、K+、Mg2+、Ca2+、SO42-和Cl-,經過分析之後發現,兩集水區流域具有明顯的差異性。而由溶解態離子進一步探討兩集水區流域當中,矽酸鹽類和碳酸鹽類等兩大主要鹽類之風化速率,在乾季時,兩流域之溶解態離子主要由矽酸鹽類所貢獻,濕季時碳酸鹽類貢獻比例會明顯增高。在和平溪流域方面,矽酸鹽類於濕季時平均風化速率為32.88 t/km2/yr;碳酸鹽類於濕季時平均風化速率為86.33 t/km2/yr。在新武呂溪流域方面,矽酸鹽類於濕季時平均風化速率為69.53 t/km2/yr;碳酸鹽類於濕季時平均風化速率為273.68 t/km2/yr。雖然兩流域之矽酸鹽類和碳酸鹽類的風化速率,濕季皆較乾季時高,但是在新武呂溪流域之差距明顯較和平溪流域大。
另外,在矽酸鹽類和碳酸鹽類的化學風化過程當中,會消耗掉大氣當中的二氧化碳,和平溪流域所消耗之平均二氧化碳率約為23.9 mole/km2/yr,新武呂溪流域則約為77.7 mole/km2/yr,兩者於濕季時皆較乾季時高,主要為濕季時之高流量所導致。在外部環境因子方面,主要包含輸砂量和輸砂濃度,除了矽酸鹽類以及碳酸鹽類之風化速率與輸砂濃度變化呈現正相關之外,由輸砂濃度所評估之物理侵蝕速率也影響著兩大主要鹽類之風化速率,在和平溪流域的部分,物理侵蝕速率直接或間接增強了化學風化速率,但在新武呂溪流域的部分,在物理侵蝕速率超過10000 t/km2/yr的情形之下,可能會抑制化學風化作用的進行。透過上述之分析結果,能讓我們更了解風化作用在自然界中的進行程度以及思考有其他影響因子的可能。 | zh_TW |
| dc.description.abstract | This study conducted a comprehensive investigation on weathering along two catchments in Taiwan during 2012 to 2016 for the estimation of spatial diversity and the relation to environmental factors. In Taiwan, the Asian monsoon is a major climate system which could cause a disproportionate amount of chemical weathering. The water hydro-chemical experiments were carried out along Heping and Sinwulyu catchments in the north and south part of eastern Taiwan, respectively. Water chemistry showed different patterns between two catchments with Na+, K+, Mg2+, Ca2+, SO42- and Cl- determining the major ion composition. Besides, based on regional lithological distribution, chemical weathering sources were dominated by the decomposition of silicates and carbonates. Along Heping catchment, the weathering rates of silicate and carbonate were 32.88 t/km2/yr and 86.33 t/km2/yr. In contrast, the weathering rates of silicate and carbonate were 69.53 t/km2/yr and 273.68 t/km2/yr along Sinwulyu catchment. Although the weathering rates during dry seasons were lower than which during the wet seasons, the gap was still higher along Sinwulyu catchment.
The CO2 consumption rates by chemical weathering along Heping and Sinwulyu catchment were higher during the wet seasons with average of 23.9 mole/km2/yr and 77.7 mole/km2/yr, implying that the discharge played as a significant role. On the other hand, variations in the rates of chemical weathering show clear correlation with hydrological property including sediment yield and total suspended solid. The weathering rates of silicate and carbonate along two catchments were proportional with the total suspended solid. In addition, clearly physical erosion dominated the chemical weathering along the catchments in two different ways. Along Heping catchment, the findings suggested that physical erosion did indeed increase with chemical weathering. However, along Sinwulyu catchment, the chemical weathering rate would gradually decline when the physical erosion rate was up to 10000 t/km2/yr. All information let us understand the magnitude of weathering and realize that further factors will have to take into account between physical erosion and chemical weathering process. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:09:29Z (GMT). No. of bitstreams: 1 ntu-107-R05224211-1.pdf: 15110824 bytes, checksum: ee5e49898fe5d6198605780c7e5c4743 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 地理位置及交通概況 2 第二章 文獻回顧 5 2.1 降雨與地震和山崩之關係 5 2.2 輸砂量估算 7 2.3 河川化性與地質環境之關係 9 第三章 區域概況 12 3.1 地形概況 12 3.2 地質概況 16 3.3 土壤概況 19 3.4 氣候和水文 21 3.5 颱風事件 24 第四章 研究方法 27 4.1 現地調查 27 4.2 施密特錘試驗及岩石樣採集 28 4.3 自然物理性質試驗 29 4.4 消散耐久試驗 29 4.5 陰陽離子分析 29 4.5.1 樣品處理 29 4.5.2 陰陽離子與溶解性固體總量分析 30 4.6 崩塌地判釋及分析 30 4.7 輸砂量與物理侵蝕速率估算 32 4.8 河川化學性質分析 33 4.8.1 控制河川離子濃度機制 33 4.8.2 氯離子濃度校正 34 4.8.3 岩石的化學風化與二氧化碳消耗率 35 第五章 研究結果 37 5.1 崩塌地判釋結果 37 5.2 地質材料特性 39 5.2.1 施密特錘試驗 39 5.2.2 自然物理性質試驗 41 5.2.3 消散耐久試驗 43 5.3 輸砂量估算與輸砂濃度 44 5.4 化學風化作用 48 5.4.1 控制河川離子機制 48 5.4.2 氯離子校正 49 5.4.3 各離子濃度之時序變化 52 5.4.4 矽酸鹽類與碳酸鹽類風化速率 55 5.4.5 二氧化碳消耗率 60 第六章 討論 61 6.1 流域內部溶解態離子與外部因子之關係 61 6.2 化學風化速率與物理侵蝕速率 65 6.3 二氧化碳消耗率 67 第七章 結論 69 參考文獻 71 附錄一 施密特錘反彈數換算單壓強度關係圖 82 附錄二 自然物理性質試驗與消散耐久試驗 83 附錄三 河水樣品前處理 86 附錄四 兩流域崩塌地數化結果 87 | |
| dc.language.iso | zh-TW | |
| dc.subject | 離子濃度 | zh_TW |
| dc.subject | 輸砂濃度 | zh_TW |
| dc.subject | 化學風化 | zh_TW |
| dc.subject | 物理侵蝕 | zh_TW |
| dc.subject | 二氧化碳消耗 | zh_TW |
| dc.subject | total suspended solid | en |
| dc.subject | physical erosion | en |
| dc.subject | CO2 consumption | en |
| dc.subject | ion concentration | en |
| dc.subject | chemical weathering | en |
| dc.title | 台灣東部地區和平溪與新武呂溪流域的風化作用在時空上的分佈關係 | zh_TW |
| dc.title | Temporal and Spatial Variations of Weathering Along the Catchment of Heping river and Sinwulyu river in Eastern Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉雅瑄,林冠瑋,陳惠芬 | |
| dc.subject.keyword | 離子濃度,輸砂濃度,化學風化,物理侵蝕,二氧化碳消耗, | zh_TW |
| dc.subject.keyword | ion concentration,total suspended solid,chemical weathering,physical erosion,CO2 consumption, | en |
| dc.relation.page | 90 | |
| dc.identifier.doi | 10.6342/NTU201804323 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-12-05 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 14.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
