Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71754
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor黃心豪
dc.contributor.authorYao-Ting Huangen
dc.contributor.author黃耀霆zh_TW
dc.date.accessioned2021-06-17T06:08:42Z-
dc.date.available2020-01-07
dc.date.copyright2019-01-07
dc.date.issued2018
dc.date.submitted2018-12-19
dc.identifier.citation[1] 林宜慶,2009,〈超級電容器技術發展與應用趨勢分析〉,彰化:財團法人車輛研究測試中心。
[2] F. Zheng, M. Kotobuki, S. Song, M. O. Lai, and L. Lu, 'Review on solid electrolytes for all-solid-state lithium-ion batteries,' Journal of Power Sources, vol. 389, pp. 198-213, 2018.
[3] R. F. Gibson, 'A review of recent research on mechanics of multifunctional composite materials and structures,' Composite Structures, vol. 92, pp. 2793-2810, 2010.
[4] P. Patnaik and W. Chen, 'Advanced materials and multifunctional structures for aerospace vehicles,' National Research Council Of Canada Ottawa (Ontario) Inst For Aerospace Research2006.
[5] R. N. 2017. “Concept of electrical energy storage in structural components.” http://www.car-engineer.com/electrical-energy-storage-structural-components/.
[6] N. Shirshova, H. Qian, M. S. P. Shaffer, J. H. G. Steinke, E. S. Greenhalgh, P. T. Curtis, et al., 'Structural composite supercapacitors,' Composites Part A: Applied Science and Manufacturing, vol. 46, pp. 96-107, 2013.
[7] T. Pereira, Z. Guo, S. Nieh, J. Arias, and H. T. Hahn, 'Energy storage structural composites: a review,' Journal of composite materials, vol. 43, pp. 549-560, 2009.
[8] L. E. Asp and E. S. Greenhalgh, 'Multifunctional structural battery and supercapacitor composites,' pp. 619-661, 2015.
[9] X. Luo and D. Chung, 'Carbon-fiber/polymer-matrix composites as capacitors,' Composites science and technology, vol. 61, pp. 885-888, 2001.
[10] T. Carlson, D. Ordéus, M. Wysocki, and L. E. Asp, 'Structural capacitor materials made from carbon fibre epoxy composites,' Composites Science and Technology, vol. 70, pp. 1135-1140, 2010.
[11] B. E. Conway, Electrochemical Supercapacitors Scientific Fundamentals and Technological Applications. New York: Plenum Publishers, 1999.
[12] N. Shirshova, E. Greenhalgh, M. Shaffer, J. Steinke, P. Curtis, and A. Bismarck, 'Structured multifunctional composites for power storage devices,' in Proc. 17th Int. Conf. on ‘Composite materials proceedings’, IOM Communication Ltd, 2009.
[13] N. C. Goulbourne, H. E. Naguib, M. A. I. Shuvo, H. Karim, M. Rajib, D. Delfin, Y. Lin, 'Multifunctional composites for energy storage,' vol. 9058, p. 905808, 2014.
[14] N. Shirshova, H. Qian, M. Houlle, J. H. Steinke, A. R. Kucernak, Q. P. Fontana, E. S. Greenhalgh, A. Bismarck, and M. P. Shaffer, 'Multifunctional structural energy storage composite supercapacitors,' Faraday Discuss, vol. 172, pp. 81-103, 2014.
[15] H. Qian, A. R. Kucernak, E. S. Greenhalgh, A. Bismarck, and M. S. Shaffer, 'Multifunctional structural supercapacitor composites based on carbon aerogel modified high performance carbon fiber fabric,' ACS Appl Mater Interfaces, vol. 5, pp. 6113-22, Jul 10 2013.
[16] A. Javaid, K. K. C. Ho, A. Bismarck, J. H. G. Steinke, M. S. P. Shaffer, and E. S. Greenhalgh, 'Carbon fibre-reinforced poly(ethylene glycol) diglycidylether based multifunctional structural supercapacitor composites for electrical energy storage applications,' Journal of Composite Materials, vol. 50, pp. 2155-2163, 2015.
[17] E. S. Greenhalgh, J. Ankersen, L. E. Asp, A. Bismarck, Q. P. V. Fontana, M. Houlle, G. Kalinka, A. Kucernak, M. Mistry, S. Nguyen, H. Qian, M. Shaffer, N. Shirshova, JHG. Steinke and M. Wienrich, 'Mechanical, electrical and microstructural characterisation of multifunctional structural power composites,' Journal of Composite Materials, vol. 49, pp. 1823-1834, 2014.
[18] B. K. Deka, A. Hazarika, O. Kwon, D. Kim, Y.-B. Park, and H. W. Park, 'Multifunctional enhancement of woven carbon fiber/ZnO nanotube-based structural supercapacitor and polyester resin-domain solid-polymer electrolytes,' Chemical Engineering Journal, vol. 325, pp. 672-680, 2017.
[19] E. Senokos, Y. Ou, J. J. Torres, F. Sket, C. Gonzalez, R. Marcilla, J. J. Vilatela, 'Energy storage in structural composites by introducing CNT fiber/polymer electrolyte interleaves,' Sci Rep, vol. 8, p. 3407, 2018.
[20] Snyder, J. F., Carter, R. H., Xu, K., Wong, E. I., Nguyen, P. A., Hgo, E. H., & Wetzel, E. D.. Multifunctional structural composite batteries for US Army applications (No. ARL-RP-193). ARMY RESEARCH LAB ABERDEEN PROVING GROUND MD.
[21] Snyder, J. F., Carter, R. H., Xu, K., Wong, E. I., Nguyen, P. A., Hgo, E. H., & Wetzel, E. D.. Multifunctional structural composite batteries for US Army applications (No. ARL-RP-193). ARMY RESEARCH LAB ABERDEEN PROVING GROUND MD.
[22] P. Liu, E. Sherman, and A. Jacobsen, 'Design and fabrication of multifunctional structural batteries,' Journal of Power Sources, vol. 189, pp. 646-650, 2009.
[23] S. Ekstedt, M. Wysocki, and L. Asp, 'Structural batteries made from fibre reinforced composites,' Plastics, rubber and composites, vol. 39, pp. 148-150, 2010.
[24] T. Pereira, Z. Guo, S. Nieh, J. Arias, and H. T. Hahn, 'Embedding thin-film lithium energy cells in structural composites,' Composites Science and Technology, vol. 68, pp. 1935-1941, 2008.
[25] F. Gasco and P. Feraboli, 'Manufacturability of composite laminates with integrated thin film Li-ion batteries,' Journal of Composite Materials, vol. 48, pp. 899-910, 2013.
[26] 袁國輝,2006,《電化學電容器》,北京:化學工業。
[27] T. Christen and M. W. Carlen, 'Theory of Ragone plots,' Journal of Power Sources, vol.
91, pp. 210-216, 2000.
[28] J. Kang, J. Wen, S. H. Jayaram, A. Yu, and X. Wang, 'Development of an equivalent circuit model for electrochemical double layer capacitors (EDLCs) with distinct electrolytes,' Electrochimica Acta, vol. 115, pp. 587-598, 2014.
[29] L. L. Zhang and X. S. Zhao, 'Carbon-based materials as supercapacitor electrodes,' Chem Soc Rev, vol. 38, pp. 2520-31, 2009.
[30] Y. Sun, J. Tang, F. Qin, J. Yuan, K. Zhang, J. Li, D. M. Zhu and L. C. Qin, 'Hybrid lithium-ion capacitors with asymmetric graphene electrodes,' Journal of Materials Chemistry A, vol. 5, pp. 13601-13609, 2017.
[31] J. Ajuria, M. Arnaiz, C. Botas, D. Carriazo, R. Mysyk, T. Rojo, et al., 'Graphene-based lithium ion capacitor with high gravimetric energy and power densities,' Journal of Power Sources, vol. 363, pp. 422-427, 2017.
[32] D. Qu and H. Shi, 'Studies of activated carbons used in double-layer capacitors,' Journal of Power Sources, vol. 74, pp. 99-107, 1998.
[33] G. Salitra, A. Soffer, L. Eliad, Y. Cohen, and D. Aurbach, 'Carbon electrodes for double‐layer capacitors i. relations between ion and pore dimensions,' Journal of the Electrochemical Society, vol. 147, pp. 2486-2493, 2000.
[34] E. Raymundo-Piñero, K. Kierzek, J. Machnikowski, and F. Béguin, 'Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes,' Carbon, vol. 44, pp. 2498-2507, 2006.
[35] A. G. Pandolfo and A. F. Hollenkamp, 'Carbon properties and their role in supercapacitors,' Journal of Power Sources, vol. 157, pp. 11-27, 2006.
[36] H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi, and Z. Gu, 'Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage,' Nano letters, vol. 8, pp. 2664-2668, 2008.
[37] T. Lee, C.-H. Ooi, R. Othman, and F.-Y. Yeoh, 'Activated carbon fiber-the hybrid of carbon fiber and activated carbon,' Rev. Adv. Mater. Sci, vol. 36, pp. 118-136, 2014.
[38] 曾梓倫、 蘇清淵、 曾梓倫,2009,〈溫度與活化源對活性碳纖維之微細結構與化學性質之影響〉,《第 25 屆纖維紡織科技研討會》,台北
[39] T. Otowa, Y. Nojima, and T. Miyazaki, 'Activated Carbon Fibers,' Carbon, pp. 1315-1319, 1997.
[40] M.-C. Chang, 'The Study of Charge-Discharge Characteristics of the PVDF//LiFePO4 Battery,' National Chung Hsing University, 2014.
[41] L. Long, S. Wang, M. Xiao, and Y. Meng, 'Polymer electrolytes for lithium polymer batteries,' Journal of Materials Chemistry A, vol. 4, pp. 10038-10069, 2016.
[42] G. Feuillade and P. Perche, 'Ion-conductive macromolecular gels and membranes for solid lithium cells,' Journal of Applied Electrochemistry, vol. 5, pp. 63-69, 1975.
[43] X. Liu and T. Osaka, 'All‐Solid‐State Electric Double‐Layer Capacitor with Isotropic High‐Density Graphite Electrode and Polyethylene Oxide/LiClO4 Polymer Electrolyte,' Journal of the Electrochemical Society, vol. 143, pp. 3982-3986, 1996.
[44] X. Liu and T. Osaka, 'Properties of Electric Double‐Layer Capacitors with Various Polymer Gel Electrolytes,' Journal of the Electrochemical Society, vol. 144, pp. 3066-3071, 1997.
[45] P. Periasamy, K. Tatsumi, M. Shikano, T. Fujieda, Y. Saito, T. Sakai, M.Mizuhatac, A.Kajinamic, S.Dekic, 'Studies on PVdF-based gel polymer electrolytes,' journal of Power Sources, vol. 88, pp. 269-273, 2000.
[46] D. Saikia and A. Kumar, 'Ionic conduction in P(VDF-HFP)/PVDF–(PC + DEC)–LiClO 4 polymer gel electrolytes,' Electrochimica Acta, vol. 49, pp. 2581-2589, 2004.
[47] 黃進益譯,1998,《電化學的原理及應用》,台北:高立圖書。譯自 : Principles and applications of electrochemistry
[48] W. Gu, M. Sevilla, A. Magasinski, A. B. Fuertes, and G. Yushin, 'Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection,' Energy & Environmental Science, vol. 6, p. 2465, 2013.
[49] S. Ban, J. Zhang, L. Zhang, K. Tsay, D. Song, and X. Zou, 'Charging and discharging electrochemical supercapacitors in the presence of both parallel leakage process and electrochemical decomposition of solvent,' Electrochimica Acta, vol. 90, pp. 542-549, 2013.
[50] P. Kurzweil, 'Electrochemical Double-layer Capacitors,' University of Applied Sciences, pp. 345-407, 2015.
[51] M. Lu, F. Beguin, and E. Frackowiak, Supercapacitors: Materials, Systems, and Applications. Germany: WILEY-VCH, 2013.
[52] C. Lei, F. Markoulidis, Z. Ashitaka, and C. Lekakou, 'Reduction of porous carbon/Al contact resistance for an electric double-layer capacitor (EDLC),' Electrochimica Acta, vol. 92, pp. 183-187, 2013.
[53] M. D. Donohue and G. L. Aranovich, 'Classification of Gibbs adsorption isotherms,' Advances in Colloid and Interface Science, vol. 76-77, pp. 137-152, 1998.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71754-
dc.description.abstract本研究成功開發出一套儲能複合材料的標準化製程,其中以活化碳纖維電極、PVdF膠體電解質(gel polymer electrolyte),製作超級電容,並透過氟碳樹脂與環氧樹脂兩步驟的封裝方式將超級電容嵌入至玻璃纖維複合材料中,達到能同時承受負載與儲能的結構超級電容複合材料。此外,本研究首先針對碳纖維電極的活化方法與PVdF膠體電解質進行了研究,接著進行碳纖維電容器的製備與與封裝,利用恆電流充放電、循環伏安法及交流阻抗法來分析相關的電學性質,結果顯示在10 mA/g電流密度充放電下,具有167 mF/g的電容值及實際能量密度140 J/kg,相比於封裝前分別提升了約20%與30%,這是由於灌注時的真空壓力所影響。以拉伸試驗探討將超級電容器嵌入至玻璃纖維複合材料前後的力學性質,嵌入後平均應力仍有350.1 MPa,楊氏模數為14 GPa。為了解多功能儲能複合材料電學性質隨拉伸負載的變化,建立兩種負載變化的情形,觀察與分析電學性質。研究結果表明,兩種情形下,多功能儲能複合材料隨拉伸負載增加,相比於未受任何負載前,能量密度最大的變化率約為10%與12%,這是由於伯松比的效應,當材料受軸向拉伸時軸向伸長,側向收縮,使內部電容器受擠壓,電極距離改變,電性提升。而在玻璃纖維複合材料失效破壞前,超級電容器仍正常運作。最後將封裝後的成品置於空氣中,觀察十四天之間的衰變情形,儲能表現仍保有約96%。zh_TW
dc.description.abstractThis study demonstrates a standardized process to fabricate embedded multifunctional energy storage composites. Using Activated carbon fiber electrodes and PVdF-based gel electrolyte as building materials for supercapacitors. Two-step packaging method is used to fabricate glass-fiber reinforced polymer (GFRP) composites that can make it simultaneously bear mechanical loadings and store energy. Carbon fabric with three different activation methods and PVdF-based gel electrolyte are characterized by an electrochemical test. In addition, the electrochemical properties of the multifunctional energy storage composites are determined by galvanostatic charge-discharge (GCD), cyclic voltammetry and AC impedance method (EIS). The result shows that specific capacitance and energy density of supercapacitor with GFRP have 142 mF/g and 15.7 Wkg^(-1) provide 20% and 30% enhancement performance than a bare cell, respectively. The mechanical properties of the supercapacitor embedding of GFRP are investigated by tensile test; the result shows the average stress of 350.1 MPa and Young’s modulus of 14 GPa. Furthermore, to understand the electrical properties of multifunctional energy storage composites with external load changes, two different situations were also established. With the tensile load increase, the supercapacitor energy density is increased by around 10%, and the structural supercapacitor undergoing cyclic tensile is still functioning normally before the GFRP failure load.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:08:42Z (GMT). No. of bitstreams: 1
ntu-107-R05525078-1.pdf: 5284950 bytes, checksum: 6a5c79b1b80bf556f0ed6156b9f9f9a6 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
英文摘要 iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 簡介 1
1.1 動機 1
1.2 研究背景 1
1.3 研究目的 2
1.4 重要性與貢獻 3
1.5 名詞對照與符號說明 4
1.5.1 英文專有名詞與中文翻譯對照 4
1.5.2 符號說明表 7
第二章 文獻探討 11
2.1多功能儲能複合材料 11
2.1.1沿革 11
2.1.2碳纖維電容複合材料 11
2.1.3碳纖維超級電容複合材料 13
2.1.4碳纖維電池複合材料 18
2.2超級電容器 20
2.2.1概述 20
2.2.2超級電容器原理與分類 21
2.3碳電極超級電容器探討 25
2.3.1活性碳(Activated carbons) 25
2.3.2奈米碳管(Carbon nanotubes) 26
2.3.3複合碳材料(Carbon-based composites) 27
2.4碳纖維電極活化碳討 27
2.5高分子聚合物電解質 31
2.5.1概述 31
2.5.2固態聚合物電解質(Solid polymer electrolytes) 32
2.5.3膠體聚合物電解質(Gel polymer electrolyte) 33
第三章 研究方法 37
3.1研究流程 37
3.2實驗方法 39
3.2.1電化學檢測方法 39
3.2.2碳纖維電極表面處理與比表面積分析 51
3.2.3膠體電解質 54
3.2.4超級電容器製程與封裝 56
3.2.5多功能儲能複合材料性能檢測 60
3.2.6超級電容器壽命檢測 63
3.3實驗儀器與設備 63
3.4實驗藥品 66
第四章 研究結果 67
4.1碳纖維電極活化 67
4.1.1碳纖維微結構分析 67
4.1.2比電容 68
4.2PVdF膠體電解質特性 70
4.2.1濃度 70
4.2.2導電度 71
4.2.3電位窗探討 73
4.3超級電容器特性 74
4.3.1未活化碳纖維超級電容器 74
4.3.2活化碳纖維超級電容器 77
4.3.3操作電位探討 79
4.3.4封裝後性能表現 82
4.4多功能儲能複合材料特性 84
4.4.1複合材料試片 85
4.4.2儲能複合材料性能表現 87
第五章 討論 92
5.1碳纖維活化程序 92
5.2碳纖維孔徑分佈分析 92
5.3碳纖維超級電容器製程與封裝程序探討 94
5.4系統截止電位討論 98
5.5複合測試特性與破壞模式探討 99
5.6成品壽命檢測 102
5.6成品電學特性比較與分析 103
第六章 結論與未來展望 104
6.1結論 104
6.2未來展望 106
第七章 參考文獻 107
dc.language.isozh-TW
dc.subject膠體電解質zh_TW
dc.subject超級電容zh_TW
dc.subject嵌入式zh_TW
dc.subject多功能能複合材料zh_TW
dc.subject活化碳纖維zh_TW
dc.subjectsupercapacitoren
dc.subjectactivated carbon fiberen
dc.subjectgel electrolyteen
dc.subjectcompositesen
dc.subjectenergy storageen
dc.subjectmultifunctionalen
dc.subjectembeddeden
dc.title以活化碳纖維電極及PVdF膠體聚合物製備嵌入式多功能儲能複合材料-電化學與力學性能探討zh_TW
dc.titlePreparation of Embedded Multifunctional Energy Storage Composites with Activated Carbon Fiber Electrode and PVdF-based Gel Polymer Electrolytes ¬— on Electrochemical and Mechanical Propertiesen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.coadvisor陳洵毅(hsunyichen@ntu.edu.tw)
dc.contributor.oralexamcommittee張豐丞,李岳聯(yuehlien@ntu.edu.tw)
dc.subject.keyword超級電容,嵌入式,多功能能複合材料,膠體電解質,活化碳纖維,zh_TW
dc.subject.keywordsupercapacitor,embedded,multifunctional,energy storage,composites,gel electrolyte,activated carbon fiber,en
dc.relation.page109
dc.identifier.doi10.6342/NTU201804364
dc.rights.note有償授權
dc.date.accepted2018-12-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
Appears in Collections:工程科學及海洋工程學系

Files in This Item:
File SizeFormat 
ntu-107-1.pdf
  Restricted Access
5.16 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved