請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71734
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 魏志潾 | |
dc.contributor.author | Hsiao-Chien Chen | en |
dc.contributor.author | 陳孝謙 | zh_TW |
dc.date.accessioned | 2021-06-17T06:08:03Z | - |
dc.date.available | 2020-01-07 | |
dc.date.copyright | 2019-01-07 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-12-26 | |
dc.identifier.citation | Aguirrezabalaga F, Ceberio A (2005) Spionidae (Annelida: Polychaeta) from the Cap-breton Canyon (Bay of Biscay, NE Atlantic) with descriptions of a new genus and three new species. Mar Biol Res 1:267–280
Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143 Baselga A (2012) The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Glob Ecol Biogeogr 21:1223–1232 Bianchi CN, Morri C (2000) Marine Biodiversity of the Mediterranean Sea: Situation, Problems and Prospects for Future Research. Mar Pollut Bull 40:367–376 Blake JA (2009) Redescription of Capitella capitata (Fabricius) from West Greenland and designation of a neotype (Polychaeta, Capitellidae). Zoosymposia 2:55–80 Botta-Dukát Z, Wilson JB (2005) Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J Veg Sci 16:533–540 Boyle MJ, Seaver EC (2009) Evidence of a dorsal pharynx in the marine polychaete Capitella teleta (Polychaeta: Capitellidae). Zoosymposia 2:317–328 Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diver-sity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–1087 Cardell MJ, Sardà R, Romero J (1999) Spatial changes in sublittoral soft-bottom poly-chaete assemblages due to river inputs and sewage discharges. Acta Oecol 20:343–351 Chao A, Chiu C-H, Sun I-F, Thorn S, Lin Y, Chiang J-M, Sherwin W (2018) An attrib-ute-diversity approach to functional diversity, functional beta diversity, and related dissimilarity measures. Ecol Monogr (in press) Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and es-timation in species diversity studies. Ecol Monogr 84:45–67 Chiou M-D, Jan S, Wang J, Lien R-C, Chien H (2011) Sources of baroclinic tidal energy in the Gaoping Submarine Canyon off southwestern Taiwan. J Geophys Res, C, Oceans 116: C12016 Coll M, Shannon LJ, Kleisner KM, Juan-Jordá MJ, Bundy A, Akoglu AG, Banaru D, Boldt JL, Borges MF, Cook A, Diallo I, Fu C, Fox C, Gascuel D, Gurney LJ, Hat-tab T, Heymans JJ, Jouffre D, Knight BR, Kucukavsar S, Large SI, Lynam C, Machias A, Marshall KN, Masski H, Ojaveer H, Piroddi C, Tam J, Thiao D, Thiaw M, Torres MA, Travers-Trolet M, Tsagarakis K, Tuck I, Meeren GI van der, Yemane D, Zador SG, Shin Y-J (2016) Ecological indicators to capture the effects of fishing on biodiversity and conservation status of marine ecosystems. Ecol Indic 60:947–962 D’agata S, Mouillot D, Kulbicki M, Andréfouët S, Bellwood DR, Cinner JE, Cowman PF, Kronen M, Pinca S, Vigliola L (2014) Human-Mediated Loss of Phylogenetic and Functional Diversity in Coral Reef Fishes. Curr Biol 24:555–560 Danielsson Å, Rahm L, Brüchert V, Bonaglia S, Raymond C, Svensson O, Yekta SS, Reyier H, Gunnarsson JS (2018) Effects of re-oxygenation and bioturbation by the polychaete Marenzelleria arctia on phosphorus, iron and manganese dynamics in Baltic Sea sediments. Boreal Environ Res Int Interdiscip J 23:15–28 Dauer DM, Maybury CA, Ewing RM (1981) Feeding behavior and general ecology of several spionid polychaetes from the chesapeake bay. J Exp Mar Biol Ecol 54:21–38 De Leo FC, Vetter EW, Smith CR, Rowden AA, McGranaghan M (2014) Spatial scale-dependent habitat heterogeneity influences submarine canyon macrofaunal abundance and diversity off the Main and Northwest Hawaiian Islands. Deep Sea Res II 104:267–290 Devictor V, Mouillot D, Meynard C, Jiguet F, Thuiller W, Mouquet N (2010) Spatial mismatch and congruence between taxonomic, phylogenetic and functional diver-sity: the need for integrative conservation strategies in a changing world: Spatial mismatch between diversity facets. Ecol Lett 8: 1030-1040 Dolbeth M, Teixeira H, Marques JC, Pardal MÂ (2009) Feeding guild composition of a macrobenthic subtidal community along a depth gradient. Sci Mar 73:225–237 Douglas B, Martin M, Ben B, Steve W (2015) Fitting Linear Mixed-Effects Models Using lme4 | Bates | Journal of Statistical Software. J Stat Softw 1:47 Duffy JE, Lefcheck JS, Stuart-Smith RD, Navarrete SA, Edgar GJ (2016) Biodiversity enhances reef fish biomass and resistance to climate change. PNAS 113:6230–6235 Emerson BC, Gillespie RG (2008) Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol Evo 23:619–630 Fauchald K, Jumars PA (1979) The diet of worm: a study for polychaete feeding guild. Oceanogr Mar Biol Ann Rev 17:193–284 Faulwetter S, Markantonatou V, Pavloudi C, Papageorgiou N, Keklikoglou K, Chat-zinikolaou E, Pafilis E, Chatzigeorgiou G, Vasileiadou K, Dailianis T, Fanini L, Koulouri P, Arvanitidis C (2014) Polytraits: A database on biological traits of ma-rine polychaetes. Biodivers Data J 2: e1024 Ferner MC, Jumars PA (1999) Responses of deposit-feeding spionid polychaetes to dissolved chemical cues. J Exp Mar Biol Ecol 236:89–106 Flynn DFB, Mirotchnick N, Jain M, Palmer MI, Naeem S (2011) Functional and phylo-genetic diversity as predictors of biodiversity–ecosystem-function relationships. Ecology 92:1573–1581 Forest F, Grenyer R, Rouget M, Davies TJ, Cowling RM, Faith DP, Balmford A, Man-ning JC, Procheş Ş, Bank M van der, Reeves G, Hedderson TAJ, Savolainen V(2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445:757–760. García Molinos J, Halpern BS, Schoeman DS, Brown CJ, Kiessling W, Moore PJ, Pan-dolfi JM, Poloczanska ES, Richardson AJ, Burrows MT (2016) Climate velocity and the future global redistribution of marine biodiversity. Nat Clim Chang 6:83–88 Giere O, Ebbe B, Erséus C (2008) Questa (Annelida, Polychaeta, Orbiniidae) from Pa-cific regions — new species and reassessment of the genus Periquesta. Org Divers Evol 7:304–319 Granberg ME, Gunnarsson JS, Hedman JE, Rosenberg R, Jonsson P (2008) Bioturba-tion-Driven Release of Organic Contaminants from Baltic Sea Sediments Mediated by the Invading Polychaete Marenzelleria neglecta. Environ Sci Technol 42:1058–1065 Gray JS (1997) Marine biodiversity: patterns, threats and conservation needs. Biodivers Conserv 6:153–175 Gunton LM, Neal L, Gooday AJ, Bett BJ, Glover AG (2015) Benthic polychaete diver-sity patterns and community structure in the Whittard Canyon system and adjacent slope (NE Atlantic). Deep Sea Res I 106:42–54 Hill MO (1973) Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology 54:427–432 Hsu F-H, Su C-C, Wang C-H, Lin S, Liu J, Huh C-A (2014) Accumulation of terrestrial organic carbon on an active continental margin offshore southwestern Tai-wan:Source-to-sink pathways of river-borne organic particles. J Asian Earth Sci 91:163–173 Huh C-A, Lin H-L, Lin S, Huang Y-W (2009) Modern accumulation rates and a budget of sediment off the Gaoping (Kaoping) River, SW Taiwan: A tidal and flood dominated depositional environment around a submarine canyon. J Mar Sci 76:405–416 Isbell F, Gonzalez A, Loreau M, Cowles J, Díaz S, Hector A, Mace GM, Wardle DA, O’Connor MI, Duffy JE, Turnbull LA, Thompson PL, Larigauderie A (2017) Linking the influence and dependence of people on biodiversity across scales. Na-ture 546:65–72 Juan S de, Thrush SF, Demestre M (2007) Functional changes as indicators of trawling disturbance on a benthic community located in a fishing ground (NW Mediterra-nean Sea). Mar Ecol Prog Ser 334:117–129 Jumars PA (1975) Environmental grain and polychaete species’ diversity in a bathyal benthic community. Mar Biol 30:253–266 Jumars P, Dorgan K, M Lindsay S (2014) Diet of Worms Emended: An Update of Pol-ychaete Feeding Guilds. Annu Rev Mar Sci 7 : 497-520 Lawton JH, Bignell DE, Bolton B, Bloemers GF, Eggleton P, Hammond PM, Hodda M, Holt RD, Larsen TB, Mawdsley NA, Stork NE, Srivastava DS, Watt AD (1998)Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 391:72–76 Leduc D, Rowden AA, Probert PK, Pilditch CA, Nodder SD, Vanreusel A, Duineveld GCA, Witbaard R (2012) Further evidence for the effect of particle-size diversity on deep-sea benthic biodiversity. Deep Sea Res Part 1 Oceanogr Res Pap 63:164–169 Lefcheck JS, Byrnes JEK, Isbell F, Gamfeldt L, Griffin JN, Eisenhauer N, Hensel MJS, Hector A, Cardinale BJ, Duffy JE (2015) Biodiversity enhances ecosystem multi-functionality across trophic levels and habitats. Nat Commun 6:6936 Lefcheck JS, Duffy JE (2015) Multitrophic functional diversity predicts ecosystem functioning in experimental assemblages of estuarine consumers. Ecology 96:2973–2983 León-González JA de, Díaz-Castañeda V (2011) A new species of Paradoneis (Poly-chaeta: Paraonidae) from the western coast of Baja California, Mexico. Proc Biol Soc Wash 124:40–44 Liu JT, Wang Y-H, Yang RJ, Hsu RT, Kao S-J, Lin H-L, Kuo FH (2012) Cy-clone-induced hyperpycnal turbidity currents in a submarine canyon. J Geophys Res C Oceans 117: C4 Mace GM, Gittleman JL, Purvis A (2003) Preserving the Tree of Life. Science 300:1707–1709 Maciolek NJ (1985) A revision of the genus Prionospio Malmgren, with special emphasis on species from the Atlantic Ocean, and new records of species belonging to thegenera Apoprionospio Foster and Paraprionospio Caullery (Polychaeta, An-nelida, Spionidae). Zool J Linnean Soc 84:325–383 Maciolek NJ (1990) A redescription of some species belonging to the genera Spio and Microspio (Polychaeta: Annelida) and descriptions of three new species from the northwestern Atlantic Ocean. J Nat Hist 24:1109–1141 Maximov A, Bonsdorff E, Eremina T, Kauppi L, Norkko A, Norkko J (2015) Con-text-dependent consequences of Marenzelleria spp. (Spionidae: Polychaeta) inva-sion for nutrient cycling in the Northern Baltic Sea. Oceanologia 57:342–348 McClain CR, Barry JP (2010) Habitat heterogeneity, disturbance, and productivity work in concert to regulate biodiversity in deep submarine canyons. Ecology 91:964–976 McClain CR, Rex MA (2015) Toward a Conceptual Understanding of β-Diversity in the Deep-Sea Benthos. Annu Rev Ecol Evol Syst 46:623–642 Rex MA, Etter RJ (2010) Deep-Sea Biodiversity. Harvard University Press. Cambridge, MA Midi H, Sarkar SK, Rana S (2010) Collinearity diagnostics of binary logistic regression model. J Interdiscip Math 13:253–267 Montiel A, Hilbig B, Rozbaczylo N (2002) New records to Chile of the Family Paraon-idae (Annelida: Polychaeta). Helgol Mar Res 56:134 Musale AS, Desai DV (2011) Distribution and abundance of macrobenthic polychaetes along the South Indian coast. Environ Monit Assess 178:423–436 Naeem S (1998) Species Redundancy and Ecosystem Reliability. Conserv Biol 12:39–45 Paramor O, Hughes R (2004) The effects of bioturbation and herbivory by the poly-chaete Nereis diversicolor on loss of saltmarsh in south-east England. J Appl Ecol 41:449–463 Pechenik JA (1999) On the advantages and disadvantages of larval stages in benthic marine invertebrate life cycles. Mar Ecol Prog Ser 177:269–297 Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen I-C, Clark TD, Col-well RK, Danielsen F, Evengård B, Falconi L, Ferrier S, Frusher S, Garcia RA, Griffis RB, Hobday AJ, Janion-Scheepers C, Jarzyna MA, Jennings S, Lenoir J, Linnetved HI, Martin VY, McCormack PC, McDonald J, Mitchell NJ, Mustonen T, Pandolfi JM, Pettorelli N, Popova E, Robinson SA, Scheffers BR, Shaw JD, Sorte CJB, Strugnell JM, Sunday JM, Tuanmu M-N, Vergés A, Villanueva C, Wernberg T, Wapstra E, Williams SE (2017) Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355: eaai9214 Petchey OL, Gaston KJ (2002) Functional diversity (FD), species richness and commu-nity composition. Ecol Lett 5:402–411 Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9:741–758 Reish DJ (1980) The effect of different pollutants on ecologically important polychaete worms. U.S. Environmental Protection Agency. Environmental Research Labora-tory, Narragansett, Rhode Island. Ricotta C, Bello F de, Moretti M, Caccianiga M, Cerabolini BEL, Pavoine S (2016) Measuring the functional redundancy of biological communities: a quantitative guide. Methods Ecol Evol 7:1386–1395 Romano C, Coenjaerts J, Flexas MM, Zúñiga D, Vanreusel A, Company JB, Martin D (2013) Spatial and temporal variability of meiobenthic density in the Blanes sub-marine canyon (NW Mediterranean). Prog Oceanogr 118:144–158 Rosenfeld JS (2002) Functional redundancy in ecology and conservation. Oikos 98:156–162 Rosli N, Leduc D, Rowden AA, Probert PK (2018) Review of recent trends in ecologi-cal studies of deep-sea meiofauna, with focus on patterns and processes at small to regional spatial scales. Mar Biodiv 48:13–34 Rouse G, Pleijel F (2001) Polychaetes. Oxford University Press. Oxford, New York Schückel U, Kröncke I, Baird D (2015) Linking long-term changes in trophic structure and function of an intertidal macrobenthic system to eutrophication and climate change using ecological network analysis. Mar Ecol Prog Ser 536:25–38 Tamaki A (1985) Inhibition of larval recruitment of ARmandia sp. (Polychaeta: Opheli-idae) by established adults of Pseudopolydora paucibranchiata (Okuda) (Polychae-ta : Spionidae) on an intertidal sand flat. J Exp Mar Biol Ecol 87:67–82 Thompson B, Lowe S (2004) Assessment of macrobenthos response to sediment con-tamination in the San Francisco Estuary, California, USA. Environ Toxicol Chem 23:2178–2187 Tsutsumi H, Kikuchi T (1984) Study of the life history of Capitella capitata (Polychaeta: Capitellidae) in Amakusa, South Japan including a comparison with other geo-graphical regions. Mar Biol 80:315–321 Vergés A, Steinberg PD, Hay ME, Poore AGB, Campbell AH, Ballesteros E, Heck KL, Booth DJ, Coleman MA, Feary DA, Figueira W, Langlois T, Marzinelli EM, Miz-erek T, Mumby PJ, Nakamura Y, Roughan M, Sebille E van, Gupta AS, Smale DA, Tomas F, Wernberg T, Wilson SK (2014) The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc R Soc B 281: 1789 Wal D van der, Lambert GI, Ysebaert T, Plancke YMG, Herman PMJ (2017) Hydro-dynamic conditioning of diversity and functional traits in subtidal estuarine macrozoobenthic communities. Estuar Coast Shelf Sci 197:80–92 Walker BH (1992) Biodiversity and Ecological Redundancy. Conserv Biol 6:18–23 Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and Commu-nity Ecology. Annu Rev Ecol Syst 33:475–505 Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr 30:279–338 Whittaker RH (1967) Gradient Analysis of Vegetation. Biol Rev 42:207–264 Whittaker RH, Niering WA (1975) Vegetation of the Santa Catalina Mountains, Arizo-na. V. Biomass, Production, and Diversity along the Elevation Gradient. Ecology 56:771–790 Wildish D, Kristmanson D (1997) Benthic suspension feeders and flow. Cambridge University Press. Cambridge, UK Zhadan A, Vortsepneva E, Tzetlin A (2014) Three-dimensional reconstruction of the musculature of Cossura pygodactylata Jones, 1956 (Annelida: Cossuridae). Zool Anz 253:181–191 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71734 | - |
dc.description.abstract | 生物多樣性是現今環境變遷的一項重要指標,為探討在不同空間尺度下生物多樣性受到強烈環境變化的影響,本研究於2014至2015年底在高屏海底峽谷及其相鄰斜坡重複採集深海底棲多毛類,將生物樣本分類至屬或科,並測量其α-多樣性:包括分類多樣性(Taxonomic diversity)及功能多樣性(Functional diversity),以及β-多樣性:包括群聚組成、物種致換(Turnover)及物種嵌套(Nestedness)的變化,探討不同層面之生物多樣性在強烈內潮擾動之高屏海底峽谷及相對穩定之大陸斜坡的變化。研究結果顯示,由於高屏峽谷強烈內潮的影響,該地區底流速度較快,沉積物侵蝕時間較長,因此多毛類群聚組成明顯與鄰近斜坡不同。此外由於峽谷強勁底流長時間侵蝕沉積物中較富有機質的細顆粒,因此不論是優勢、常見或是總多毛類分類群及功能群數量都因為食物缺乏及物理擾動而明顯減少。另外,在高屏峽谷及其相鄰斜坡的兩條穿越線中,多毛類β-多樣性主要由物種致換(Turnover)造成,此結果可歸因於由深度梯度造成之環境因子改變,使得適應能力較差之科屬被取代。但若比較峽谷及其相鄰斜坡的採樣,在600公尺以淺,物種嵌套(物種喪失,Nestedness)是影響β-多樣性的主要機制,然而在600公尺以深,物種致換則為影響β-多樣性的主要機制,其原因推測為接近峽谷頭物理擾動較強,造成多毛類區域性滅絕,然而遠離峽谷頭環境漸趨穩定,較適應擾動環境的多毛類則取代適性較差之科屬。總結來說,透過本研究我們更進一步了解在強烈物理擾動下,深海底棲分類多樣性、功能多樣性及群聚組成的變化及其影響機制。 | zh_TW |
dc.description.abstract | In this study, we conducted a repeated sampling in the Gaoping submarine canyon (GPSC) and adjacent slope over a year to examine the effect of a physically dynamic and perturbed submarine canyon on the biodiversity of deep-sea polychaete assemblages. We compared the biodiversity at different spatial scales (i.e., α and β-diversity) and for the taxonomic (i.e., genus/family abundance) and functional attributes (i.e., functional traits). We showed that the taxon (genus/family) composition of polychaete in the GPSC was distinctly different from that on the adjacent slope. The total, common and dominant taxa, and functional groups were all depressed in the GPSC, presumably, due to habitat destruction by episodic turbidity currents and erosion and removal of the or-ganic-rich fine sediment by strong internal-tide-driven currents in the canyon. The higher taxon turnover (taxon replacement) than taxon nestedness (taxon loss) along the canyon and slope transects suggests that the environmental-selective differentiation (e.g., depth-related factors) were the key process determining the bathymetric variation of the polychaete assemblages. Between the GPSC and adjacent slope, the taxon nestedness was higher than the taxon turnover in the shallower sites (< 600 m) but the turnover was higher than the nestedness in the deeper sites (> 600m), suggesting a transition of the dominant mechanisms from “local extinction” to “environmental filtering” in shaping the variation of polychaete assemblages from the slope to the canyon. Overall, our study provides insights on how polychaetes taxonomic and functional diversity responded to the physical disturbance in the deep-sea, as well as improves the mechanistic under-standing of the interplays among multiple environmental drivers in shaping the deep-sea diversity. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T06:08:03Z (GMT). No. of bitstreams: 1 ntu-107-R05241202-1.pdf: 2648680 bytes, checksum: 4840ca952f2beee9988fe817d2694966 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審定書 ii
致謝 iii 中文摘要 iv Abstract vi Content viii 1. Introduction 1 2. Material and Methods 7 2.1. Sampling 7 2.2 Data analysis 8 2.2.1. Environmental factors 8 2.2.2. Polychaete functional traits 9 2.2.3. Taxonomic and functional composition 10 2.2.4. α-diversity 10 2.2.5. β-diversity 13 2.2.6. Biodiversity-environmental relationships 15 2.2.7. Statistical test 16 3. Results 18 3.1. Spatial variation in taxonomic and functional composition 18 3.2. Spatial variation of α-diversity and polychaetes abundance 19 3.3. Compositional variation and β-diversity partition 21 3.4. Linking environmental factors to assemblage resemblance 21 3.5. Relationships between α-diversity and environmental factors 22 4. Discussion 24 4.1. Variation in polychaete composition 24 4.2. Response of taxonomic and functional diversity to internal tide disturbance 26 4.3. Mechanism controls β-diversity 30 5. Conclusion 33 6. References 35 7. Figures 48 8. Tables 59 9. Appendix 63 | |
dc.language.iso | en | |
dc.title | 臺灣西南海域高屏海底峽谷深海多毛類分類多樣性及功能多樣性之分布 | zh_TW |
dc.title | Taxonomic and Functional Diversity of Deep-sea Poly-chaetes in the Gaoping Submarine Canyon (SW Taiwan Margin) | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 單偉彌,戴昌鳳 | |
dc.subject.keyword | 多毛類,海底峽谷,α多樣性,β多樣性,分類多樣性,功能多樣性,物種置換,物種嵌套, | zh_TW |
dc.subject.keyword | Polychaetes,Submarine canyon,α-diversity,β-diversity,Taxonomic diversity,Functional diversity,Turnover,Nestedness, | en |
dc.relation.page | 76 | |
dc.identifier.doi | 10.6342/NTU201804394 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-12-26 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 2.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。