請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71722
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蘇國棟(Guo-Dung J. Su) | |
dc.contributor.author | Hsuan-Wen Wang | en |
dc.contributor.author | 王宣文 | zh_TW |
dc.date.accessioned | 2021-06-17T06:07:41Z | - |
dc.date.available | 2028-12-28 | |
dc.date.copyright | 2019-01-07 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2019-01-02 | |
dc.identifier.citation | [1] N. Sugiura, and S. Morita, “Variable-focus liquid-filled optical lens,” Applied Optics, vol. 32, no. 22, pp. 4181-4186, 1993.
[2] H. Ren, and S.-T. Wu, Introduction to adaptive lenses: John Wiley & Sons, 2012. [3] G. Beni, and S. Hackwood, “ELECTRO-WETTING DISPLAYS,” Applied Physics Letters, vol. 38, no. 4, pp. 207-209, 1981. [4] S. Sato, “Liquid-crystal lens-cells with variable focal length,” Japanese Journal of Applied Physics, vol. 18, no. 9, pp. 1679, 1979. [5] S. Sato, “Applications of liquid crystals to variable-focusing lenses,” Optical Review, vol. 6, no. 6, pp. 471-485, 1999. [6] B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Japanese Journal of Applied Physics, vol. 41, no. 11A, pp. L1232, 2002. [7] H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Applied physics letters, vol. 84, no. 23, pp. 4789-4791, 2004. [8] Y.-H. Fan, H. Ren, X. Liang, H. Wang, and S.-T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” Journal of display technology, vol. 1, no. 1, pp. 151-156, 2005. [9] H. Dai, Y. Liu, X. Sun, and D. Luo, “A negative-positive tunable liquid-crystal microlens array by printing,” Optics express, vol. 17, no. 6, pp. 4317-4323, 2009. [10] H. Ren, and S.-T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Optics Express, vol. 14, no. 23, pp. 11292-11298, 2006. [11] N. Fraval, P. Joffre, S. Formont, and J. Chazelas, “Electrically tunable liquid-crystal wave plate using quadripolar electrode configuration and transparent conductive polymer layers,” Applied optics, vol. 48, no. 28, pp. 5301-5306, 2009. [12] S. Sato, A. Sugiyama, and R. Sato, “Variable-focus liquid-crystal Fresnel lens,” Japanese journal of applied physics, vol. 24, no. 8A, pp. L626, 1985. [13] W.-M. Huang, R.-K. Yang, and G.-D. J. Su, “Variable focus microlens array with curved electrodes,” Journal of Micromechanics and Microengineering, vol. 27, no. 5, pp. 055003, 2017. [14] W. Choi, D.-W. Kim, and S.-D. Lee, “Liquid crystal lens array with high fill-factor fabricated by an imprinting technique,” Molecular Crystals and Liquid Crystals, vol. 508, no. 1, pp. 35/[397]-40/[402], 2009. [15] D. Liang, and Q.-H. Wang, “Liquid crystal microlens array using double lenticular electrodes,” Journal of Display Technology, vol. 9, no. 10, pp. 814-818, 2013. [16] H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Optics express, vol. 15, no. 18, pp. 11328-11335, 2007. [17] B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Applied optics, vol. 43, no. 17, pp. 3420-3425, 2004. [18] K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Optics express, vol. 18, no. 13, pp. 13981-13992, 2010. [19] H.-C. Lin, and Y.-H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Optics express, vol. 20, no. 3, pp. 2045-2052, 2012. [20] B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photonics Technology Letters, vol. 18, no. 1, pp. 79-81, 2006. [21] O. Pishnyak, S. Sato, and O. D. Lavrentovich, “Electrically tunable lens based on a dual-frequency nematic liquid crystal,” Applied Optics, vol. 45, no. 19, pp. 4576-4582, 2006. [22] T. Nose, S. Masuda, and S. Sato, “Optical properties of a hybrid-aligned liquid crystal microlens,” Molecular Crystals and Liquid Crystals, vol. 199, no. 1, pp. 27-35, 1991. [23] T. Nose, S. Masuda, and S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Japanese journal of applied physics, vol. 30, no. 12B, pp. L2110, 1991. [24] M. Ye, and S. Sato, “Optical properties of liquid crystal lens of any size,” Japanese journal of applied physics, vol. 41, no. 5B, pp. L571, 2002. [25] C.-W. Chiu, Y.-C. Lin, P. C.-P. Chao, and A. Y.-G. Fuh, “Achieving high focusing power for a large-aperture liquid crystal lens with novel hole-and-ring electrodes,” Optics express, vol. 16, no. 23, pp. 19277-19284, 2008. [26] H.-C. Lin, and Y.-H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Applied Physics Letters, vol. 97, no. 6, pp. 063505, 2010. [27] T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Japanese journal of applied physics, vol. 31, no. 5S, pp. 1643, 1992. [28] M. Ye, S. Hayasaka, and S. Sato, “Liquid crystal lens array with hexagonal-hole-patterned electrodes,” Japanese journal of applied physics, vol. 43, no. 9R, pp. 6108, 2004. [29] M. Kawamura, and Y. Ito, “Liquid crystal lens with double circularly hole-patterned electrodes,” Molecular Crystals and Liquid Crystals, vol. 542, no. 1, pp. 176/[698]-181/[703], 2011. [30] Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Applied Physics Letters, vol. 96, no. 11, pp. 113505, 2010. [31] L. Guoqiang, 'Adaptive lens,' Progress in Optics, pp. 199-283: Elsevier, 2010. [32] Y.-S. Hwang, T.-H. Yoon, and J. C. Kim, “Design and fabrication of variable focusing lens array using liquid crystal for integral photography,” Japanese journal of applied physics, vol. 42, no. 10R, pp. 6434, 2003. [33] Y. Liu, X. Sun, and Q. Wang, “A focus-switchable lens made of polymer–liquid crystal composite,” Journal of crystal growth, vol. 288, no. 1, pp. 192-194, 2006. [34] R. Hamdi, G. Petriashvili, G. Lombardo, M. De Santo, and R. Barberi, “Liquid crystal bubbles forming a tunable micro-lenses array,” Journal of Applied Physics, vol. 110, no. 7, pp. 074902, 2011. [35] C.-H. Lin, C.-H. Chen, R.-H. Chiang, I.-M. Jiang, C.-T. Kuo, and C.-Y. Huang, “Dual-frequency liquid-crystal lenses based on a surface-relief dielectric structure on an electrode,” IEEE Photonics Technology Letters, vol. 23, no. 24, pp. 1875-1877, 2011. [36] C. E. Clement, S. K. Thio, and S.-Y. Park, “An optofluidic tunable Fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD),” Sensors and Actuators B: Chemical, vol. 240, pp. 909-915, 2017. [37] Y.-H. Fan, H. Ren, and S.-T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystals,” Optics Express, vol. 11, no. 23, pp. 3080-3086, 2003. [38] H. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Applied Physics Letters, vol. 83, no. 8, pp. 1515-1517, 2003. [39] J.-G. Lu, X.-F. Sun, Y. Song, and H.-P. D. Shieh, “2-D/3-D switchable display by Fresnel-type LC lens,” Journal of display technology, vol. 7, no. 4, pp. 215-219, 2011. [40] J. Prost, The physics of liquid crystals: Oxford university press, 1995. [41] D.-K. Yang, Fundamentals of liquid crystal devices: John Wiley & Sons, 2014. [42] W.-M. Huang, and G.-D. J. Su, 'Fabrication of focus-tunable liquid crystal microlens array with spherical electrode.' p. 99470G. [43] Y.-H. Fan, H. Ren, and S.-T. Wu, “Electrically switchable Fresnel lens using a polymer-separated composite film,” Optics express, vol. 13, no. 11, pp. 4141-4147, 2005. [44] S.-C. Jeng, S.-J. Hwang, J.-S. Horng, and K.-R. Lin, “Electrically switchable liquid crystal Fresnel lens using UV-modified alignment film,” Optics Express, vol. 18, no. 25, pp. 26325-26331, 2010. [45] G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, and B. Kippelen, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proceedings of the National Academy of Sciences, vol. 103, no. 16, pp. 6100-6104, 2006. [46] G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Applied physics letters, vol. 90, no. 11, pp. 111105, 2007. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71722 | - |
dc.description.abstract | 本論文主要介紹Fresnel type液晶透鏡的模擬以及製程。模擬部分主要介紹如何去模擬透過Fresnel 透鏡形狀的電極對液晶層加以電壓後對於液晶層的影響。為了讓所研究可以應用在VR/AR使用者的近視校正功能,我們設計了大於瞳孔的12mm液晶透鏡。為了比傳統液晶透鏡達到更大的屈光度,我們將GRIN透鏡以及Fresnel透鏡的概念結合在一起。在經過模擬過後,我們利用精密加工去作出電極的模具,然後用PDMS以及NOA65去製作透明的Fresnel透鏡狀結構。在上面旋轉徒步上PEDOT:PSS後,我們就可以得到Fresnel type電極,接下來利用SU-8去將電極填平並將其與ITO電極塗佈上PVA後封裝,藉此就可以得到Fresnel type液晶透鏡。接著我們利用光學系統以及CMOS去觀測牛頓環,CCD去觀測透鏡的成像。透過牛頓環數的計算我們可以得到這個透鏡可以有-8.9屈光度的折光能力。可在VR/AR的近視校正以及其他可變焦可放大光學系統上的有所應用。 | zh_TW |
dc.description.abstract | In this research, the simulation and the fabrication of the Fresnel-type liquid crystal lens is demonstrated. The simulation is about how to simulate how Fresnel-type electrodes which is being applied voltage will affect the liquid crystal cell. We hope the lens can solve the problem of nearsighted user of VR/AR. So we would like to design a lens with a diameter of 12 mm which can cover human’s pupils. We choose to make a GRIN lens with Fresnel type to gain more diopters. After the simulation of the lens, we use Precision Machining to make the mold of the Fresnel-type electrodes and mold it with PDMS and NOA65 to make a transparent Fresnel lens structure. After we spin-coated PEDOT:PSS on the lens, we can get a Fresnel type electrode. Then we’ll fill in the electrode with SU-8 photoresist and assemble it with a plastic spacer and ITO glass. After the liquid crystal is filled within the gap between SU-8 photoresist and ITO glass, we can finally get a prototype of a Fresnel-type liquid crystal lens. The interference pattern is measured by CCD and the imaging of the lens is observed by CMOS. We can measure the optical power by interference pattern. The diopter ranges from 0 to 8.9 Diopters and is good for nearsighted correction in VR/AR system and also for optical zoom system and focus-tunable lens applications. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T06:07:41Z (GMT). No. of bitstreams: 1 ntu-107-R04941106-1.pdf: 2753384 bytes, checksum: e1a6a862a3e2bdb20aaed53f995130ff (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審訂書 i
誌謝 ii 中文摘要 iiii ABSTRACT iv CONTENTS vii LIST OF FIGURES ix LIST OF TABLE xiixiii Chapter 1 Introduction 1 1.1 Focus tunable lens 1 1.1.1 Elastomeric Membrane Lens 4 1.1.2 Electrowetting Lens 6 1.1.3 Liquid Crystal Lens 7 1.2 Introduction of Liquid Crystal 12 1.2.1 The history of Liquid Crystal 12 1.2.2 GRIN Liquid Crystal Lens 13 1.2.3 Mixed type Liquid Crystal Lens 15 1.2.4 Other types of Liquid Crystal Lens 15 1.3 Introduction of Fresnel-type Liquid Crystal Lens 17 1.3.1 Concept of Fresnel Lens 17 1.3.2 Fresnel Zone Plate Liquid Crystal Lens 18 1.3.3 Fresnel GRIN Lens 19 Chapter 2 Theoretically calculation 20 2.1 Freedericksz transition 20 2.2 Focal length 25 2.2.1 Method 1 25 2.2.2 Method 2 27 2.3 Calculation of Effective Indices in LC Cell 30 2.4 Simulation Method of LC Lens 31 Chapter 3 Design and Simulation of LC Lens 32 3.1 The Motivation and the Design 32 3.2 Simulation of 2dimMOS 36 3.3 Simulation of ZEMAX 38 3.4 Simulation Result 42 Chapter 4 Fabrication Materials and Process 45 4.1 Materials 45 4.1.1 SU-8 negative photoresist 45 4.1.2 Liquid crystal 45 4.1.3 Polydimethylsiloxane (PDMS) 47 4.1.4 PEDOT:PSS 48 4.1.5 NOA65 49 4.2 Fabrication process 51 4.2.1 Precision Machining 52 4.2.2 Fresnel lens structure on glass 54 4.2.3 NOA 65 Fresnel lens structure on glass substrate 55 4.2.4 Transparent conductive layer and flatten lens structure 55 4.2.5 Assemble to a liquid crystal cell 56 Chapter 5 Experimental results 59 5.1 The interference rings 59 5.2 Image performance 63 Chapter 6 Conclusion 65 REFERENCE 67 | |
dc.language.iso | zh-TW | |
dc.title | 類菲涅爾型電極可變焦距液晶透鏡的模擬與製作 | zh_TW |
dc.title | Simulation and the fabrication of focus-tunable Fresnel-type liquid crystal lens | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔡永傑,黃定洧 | |
dc.subject.keyword | 可變焦距透鏡,液晶透鏡,Fresnel液晶透鏡,精密加工,VR/AR,近視校正, | zh_TW |
dc.subject.keyword | focus-tunable lens,liquid crystal,Fresnel liquid crystal lens,Precision Machining,VR/AR,nearsighted correction, | en |
dc.relation.page | 71 | |
dc.identifier.doi | 10.6342/NTU201804411 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-01-02 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 2.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。