Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71720
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳景然(Ching-Jan Chen)
dc.contributor.authorSheng-Hsiang Panen
dc.contributor.author潘聖翔zh_TW
dc.date.accessioned2021-06-17T06:07:37Z-
dc.date.available2020-01-07
dc.date.copyright2019-01-07
dc.date.issued2018
dc.date.submitted2019-01-02
dc.identifier.citation[1] Jian Li, “Current-mode control: modeling and its digital application,” Ph.D Dissertation of Virginia Polytechnic Institute and State University, Commonwealth of Virginia, Apr. 2009.
[2] D. Goder and W. R. Pelletier, “V2 architecture provides ultra-fast transient response in switch mode power supplies”, in Proc. HFPC, 1996, pp.19-23.
[3] K. Y. Cheng, F. Yu, P. Mattavelli, and F. C. Lee, “Characterization and performance comparison of digital V2 -type constant on-time control for buck converters,” in Proc. IEEE 12th Workshop on Control and Modeling for Power Electronics, 2010, pp. 1–6.
[4] R. Redl and J. Sun, 'Ripple-based control of switching regulators—an overview,' IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2669-2680, Dec. 2009.
[5] Jian Li; Lee, F.C., 'Modeling of V2 current-mode control,' IEEE Trans. Circuits and Systems I: Regular Papers, vol.57, no.9, pp. 2552-2563, Sept. 2010
[6] S. Tian, F. C. Lee, P. Mattavelli, K. Y. Cheng and Y. Yan, 'Small-signal analysis and optimal design of external ramp for constant on-time V2 control with multilayer ceramic caps,' IEEE Trans. Power Electron., vol. 29, no. 8, pp. 4450-4460, Aug. 2014.
[7] Y. C. Lin, C. J. Chen, D. Chen and B. Wang, 'A ripple-based constant on-time control with virtual inductor current and offset cancellation for dc power converters,' IEEE Trans. Power Electron., vol. 27, no. 10, pp. 4301-4310, Oct. 2012.
[8] I. C. Wei, Y. C. Lin, C. J. Chen and D. Chen, 'Stability issues and modelling of ripple-based constant on-time control schemes operating in discontinuous conduction mode,' IET Trans. Power Electronics, vol. 7, no. 4, pp. 868-875, April 2014.
[9] Y. Yan, P. H. Liu, F. Lee, Q. Li and S. Tian, 'V2 control with capacitor current ramp compensation using lossless capacitor current sensing,' in Proc. IEEE Energy Conversion Congress and Exposition (ECCE), 2013, pp. 117-124.
[10] Y. Yan, F. C. Lee, S. Tian and P. H. Liu, 'Modeling and design optimization of capacitor current ramp compensated constant on-time V2 control,' IEEE Trans. Power Electron., vol. 33, no. 8, pp. 7288-7296, Aug. 2018.
[11] C. H. Cheng, C. J. Chen and S. S. Wang, 'Small-signal model of flyback converter in continuous-conduction mode with peak-current control at variable switching frequency,' IEEE Trans. Power Electron., vol. 33, no. 5, pp. 4145-4156, May 2018.
[12] Y. Yan, F. C. Lee, P. Mattavelli and S. Tian, 'Small signal analysis of V2 control using equivalent circuit model of current mode controls,' IEEE Trans. Power Electron., vol. 31, no. 7, pp. 5344-5353, July 2016.
[13] Y. Yan, F. C. Lee, and P. Mattavelli, 'Unified three-terminal switch model for current mode controls,' IEEE Trans. Power Electron., vol. 27, no. 9, pp. 4060-4070, Sept. 2012.
[14] J. Li and F. C. Lee, “New modeling approach and equivalent circuit representation for current-mode control,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1218–1230, May 2010.
[15] S. Bari, Q. Li and F. C. Lee, 'A new current mode constant on time control with ultrafast load transient response,' in Proc. IEEE Applied Power Electronics Conference and Exposition (APEC), 2016, pp. 3259-3265.
[16] S. Bari, Q. Li and F. C. Lee, 'Fast adaptive on time control for transient performance improvement,' in Proc. IEEE Applied Power Electronics Conference and Exposition (APEC), 2015, pp. 397-403.
[17] S. Bari, Q. Li, F. C. Lee and K. B. Cheng, 'Variable slope external ramp to improve the transient performance in constant on-time current mode control,' in Proc. IEEE Energy Conversion Congress and Exposition (ECCE), 2016, pp. 1-6.
[18] P. Liu, Y. Yan, F. C. Lee and Q. Li, 'Auto-tuning and self-calibration techniques for V2 control with capacitor current ramp compensation using lossless capacitor current sensing,' in Proc. IEEE Energy Conversion Congress and Exposition (ECCE), 2014, pp. 1105-1112.
[19] P. Liu, Y. Yan, F. C. Lee and P. Mattavelli, 'Universal compensation ramp auto-tuning technique for current mode controls of switching converters,' IEEE Trans. Power Electron., vol. 33, no. 2, pp. 970-974, Feb. 2018.
[20] S. Tian, F. C. Lee, J. Li, Q. Li and P. Liu, 'A three-terminal switch model of constant on-time current mode with external ramp compensation,' IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7311-7319, Oct. 2016.
[21] EPARC (2015)。電力電子學綜論 (第二版)。台灣台北縣: 全華圖書股份有限公司
[22] 梁適安 (2011)。電源供給器之理論與實務設計 (第二版)。台灣台北縣: 全華圖書股份有限公司
[23] R. W. Erickson, R. Maksimovic. (2001). Fundamentals of power electronics. (Second Edition). AH Dordrecht: Kluwer Academic Publishers Group
[24] A. S. Sedra, K. C. Smith (2012)。微電子電路 (第六版) (曹恆偉、林浩雄、郭建宏、陳建中合譯)。台灣台北市: 台北圖書有限公司。(原著出版年: 2011)
[25] B. Razavi (2014)。類比CMOS積體電路設計 (第二版) (李泰成譯)。台灣台北市: 美商麥格羅希爾國際股份有限公司台灣分公司。(原著出版年: 2001)
[26] Severo, Lucas & Girardi, Alessandro. (2018). gm/Id Methodology using evolutionary algorithms and electrical simulation for integrated CMOS OTA design automation. Retrieved from: https://www.researchgate.net/publication/268412411
[27] S. C. Huerta, A. Soto, P. Alou, J. A. Oliver, O. García and J. A. Cobos, 'Advanced control for very fast dc-dc converters based on hysteresis of the Cout current,' IEEE Trans. Circuits and Systems I: Regular Papers, vol. 60, no. 4, pp. 1052-1061, April 2013.
[28] S. C. Huerta, P. Alou, J. A. Oliver, O. Garcia, J. A. Cobos and A. Abou-Alfotouh, 'A very fast control based on hysteresis of the Cout current with a frequency loop to operate at constant frequency,' in Proc. IEEE Applied Power Electronics Conference and Exposition (APEC), 2009, pp. 799-805
[29] S. Y. Huang, K. Y. Fang, Y. W. Huang, S. H. Chien and T. H. Kuo, 'Capacitor-current-sensor calibration technique and application in a 4-phase buck converter with load-transient optimization,' in Proc. IEEE International Solid-State Circuits Conference (ISSCC), 2016, pp. 228-229.
[30] L. Cheng and W. H. Ki, 'A 30MHz hybrid buck converter with 36mV droop and 125ns 1% settling time for a 1.25A/2ns load transient,' in Proc. IEEE International Solid-State Circuits Conference (ISSCC), 2017, pp. 188-189.
[31] W. C. Chen et al., 'Reduction of equivalent series inductor effect in delay-ripple reshaped constant on-time control for buck converter with multilayer ceramic capacitors,' IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2366-2376, May 2013.
[32] S. H. Lee et al., 'A 0.518mm2 quasi-current-mode hysteretic buck dc-dc converter with 3μs load transient response in 0.35μm BCDMOS,' in Proc. IEEE International Solid-State Circuits Conference (ISSCC), 2015, pp. 1-3.
[33] Y. W. Huang, T. H. Kuo, S. Y. Huang and K. Y. Fang, 'A four-phase buck converter with capacitor-current-sensor calibration for load-transient-response optimization that reduces undershoot/overshoot and shortens settling time to near their theoretical limits,' IEEE Journal of Solid-State Circuits, vol. 53, no. 2, pp. 552-568, Feb. 2018.
[34] W. C. Chen, “High-performance ripple-based on-time controlled buck converter,” Ph.D Dissertation of National Chiao Tung University, Taiwan, Hsinchu, Jul. 2015.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71720-
dc.description.abstract電壓平方定導通時間控制降壓型轉換器廣泛用於微處理器和數位負載之供電,但它對於使用陶瓷電容作為其輸出電容存在不穩定性。為了解決此不穩定性,各種定導通時間控制在文獻中相繼被提出,然而,這些架構也都有其自身的問題,並在穩定性和暫態響應之間產生權衡。
為了解決這些問題,本論文提出了電容電流定導通時間控制架構之降壓型轉換器。此架構不僅沒有因使用陶瓷電容作為輸出電容所產生的不穩定性且也解離了穩定性及暫態響應之間的關係。在建立的小訊號模型中,從理論上證實了上述說法,並透過模擬作驗證。所提出的控制架構沒有因使用輸出陶瓷電容之不穩定性;而且,可以在不進行權衡的情況下實現穩定性和快速暫態響應。本論文也提出了一種動態導通時間產生器,進一步改善暫態響應並在高開關切換頻率下實現準確的導通時間。
所提出的控制架構採用0.18微米互補式金屬氧化物半導體製程來實現,開關切換頻率為四百萬赫茲,量測波型顯示了輸出電壓為1伏特及近似最佳負載暫態響應,其中電流負載抽載及卸載分別為800奈秒回穩時間及零響應。整個晶片包括墊片環之尺寸為1140.87*993.08微米平方。
zh_TW
dc.description.abstractV2 constant on-time (V2COT) controlled buck converter is widely used to power microprocessors and digital loads, but there is an instability issue when ceramic capacitors are used as the converter’s output capacitors. Various COT control schemes have been reported in the literature to address the instability issue. However, these reported schemes have problems of needing trade-off between stability and transient response.
To these issues, a capacitor current constant on-time (C2COT) scheme is proposed in this thesis for buck converters. This scheme not only does not have the instability issue when using ceramic output capacitors but also allowing the decoupling of the stability and the transient response of the converters. A small-signal model was developed to theoretical prove the above statements, and are proved in simulation. The proposed scheme has no instability issue with the ceramic output capacitor; also, stability and fast transient response can be achieved without trade-off. A dynamic on-time generator is also proposed to further improve transient response and achieve accurate on-time at the high switching frequency.
The proposed control scheme was implemented in a monolithic IC using 0.18μm CMOS process with 4-MHz switching frequency. The experiment shows that output voltage equaling to 1-Volt and near-optimal load transient responses with 800ns settling time and null-response for both load current step-up and step-down, respectively. Total chip size is only 1140.87 μm by 993.08 μm with pad ring.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:07:37Z (GMT). No. of bitstreams: 1
ntu-107-R05921073-1.pdf: 5824892 bytes, checksum: b8e000475d5abf9ea4c148bc9ebdcc1b (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定書 I
誌謝 II
中文摘要 III
Abstract V
Table of Contents VII
List of Figures X
List of Tables XV
Chapter 1 Introduction 1
1.1 Background: Voltage Regulators (VRs) 1
1.2 Review of V2 Constant On-Time Control 2
1.2.1 Sub-Harmonic Oscillation Instability 4
1.3 Control Schemes for Solving Sub-Harmonic Instability 6
1.4 Thesis Organization 11
Chapter 2 A Proposed Capacitor Current Constant On-Time (C2COT) Control Scheme for Buck Converters 13
2.1 C2COT Controlled Buck Converter 13
2.1.1 Fast Transient Response and No Sub-Harmonic Instability 15
2.2 Transient Response of C2COT Controlled Buck Converter in Simulation 16
2.3 Transient Response Comparison between C2COT Control and CMCOT Control 19
2.4 Summary 22
Chapter 3 Small-Signal Model of C2COT Control 23
3.1 Control-to-Output Transfer Function 24
3.2 Relation between C2COT and CMCOT control’s Control-to-Output Transfer Function 31
3.3 Output Impedance 34
3.4 Comparison of Small-Signal Characteristics between V2COT and C2COT Control 39
3.4.1 Output Impedance 39
3.4.2 Stability 41
3.5 Summary 45
Chapter 4 Circuit Implementation 46
4.1 Compensator 47
4.1.1 Characteristic of Type-II Compensator 49
4.1.2 Loop Gain Design 51
4.1.3 Formulating the Compensator’s Error Amplifier Specification 57
4.1.4 Choosing Compensator’s Error Amplifier 64
4.1.5 Self-Bias Cascode Amplifier Design 73
4.2 Capacitor Current Sensor 85
4.2.1 Parallel Inductance and Capacitor Current Sensing Gain Deriving 86
4.2.2 Impedance Curve of ZCout and ZS 89
4.2.3 Rules of Designing a Capacitor Current Sensor 97
4.3 Dynamic On-Time Generator with V2 Loop 99
4.3.1 Dynamic On-Time Mechanism 101
4.3.2 Dynamic On-Time Generator Design 102
4.3.3 V2 Loop Mechanism 108
4.3.4 V2 Loop Design 109
4.3.4.1 Double Sample-and-Hold (S/H) Circuit Design 109
4.3.4.2 Stability of the V2 Loop 113
4.4 Novel Minimum Off-Time Generator 117
Chapter 5 Experimental Result 122
5.1 Chip 122
5.2 PCB Board 123
5.3 Load 124
5.4 Experimental Waveforms 126
5.4.1 Accurate Constant On-Time in Steady-State Condition 126
5.4.2 Experimental Transient Waveforms for Load Step-Up and Step-Down Operation 127
5.4.2.1 Measured with the Slower Transient Slew Rate Tool 128
5.4.2.2 Measured with the Faster Transient Slew Rate Tool 129
5.4.3 Problem of Duty Cycle False Triggering 131
5.4.4 Malfunctioning Zone Operating 133
Chapter 6 Conclusions and Suggestions for Future Research 135
6.1 Conclusions 135
6.2 Future Works 137
References 138
dc.language.isoen
dc.title搭載動態導通時間產生器之新穎電容電流定導通時間控制降壓型轉換器zh_TW
dc.titleA Novel Capacitor Current Constant On-Time Controlled Buck Converter with a Dynamic On-Time Generatoren
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳德玉(Dan Chen),劉深淵(Shen-Iuan Liu)
dc.subject.keyword電壓平方定導通時間控制,電壓調節器,電容電流定導通時間控制,動態導通時間產生器,近似最佳負載暫態響應,zh_TW
dc.subject.keywordV2 constant on-time control,voltage regulators (VRs),capacitor current constant on-time (C2COT) control,dynamic on-time generator,near-optimal load transient response,en
dc.relation.page143
dc.identifier.doi10.6342/NTU201804396
dc.rights.note有償授權
dc.date.accepted2019-01-02
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
5.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved