Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71716
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁建均(Jian-Jiun Ding)
dc.contributor.authorChih-Wei Wuen
dc.contributor.author吳治緯zh_TW
dc.date.accessioned2021-06-17T06:07:30Z-
dc.date.available2020-11-13
dc.date.copyright2020-11-13
dc.date.issued2020
dc.date.submitted2020-10-23
dc.identifier.citation[1] G.-S. Hsu, J.-C. Chen, and Y.-Z. Chung, “Application-oriented license plate recognition,” in IEEE transactions on vehicular technology, vol. 62, no. 2, pp. 552–561, 2013.
[2] G. Sun, Q. Liu, Q. Liu, C. Ji, X. Li, “A novel approach for edge detection based on the theory of universal gravity,” in Pattern Recognition, vol.40, no.10, pp. 2766–2775, 2007.
[3] S. Guiming and S. Jidong, 'Multi-Scale Harris Corner Detection Algorithm Based on Canny Edge-Detection,' in IEEE International Conference on Computer and Communication Engineering Technology (CCET), pp. 305-309, doi: 10.1109/CCET.2018.8542206, 2018.
[4] J. Canny, “A computational approach to edge detection,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.8, no.6 pp.679–698, 1986.
[5] N. Dalal and B.Triggs. “Histograms of oriented gradients for human detection”. in Computer Vision and Pattern Recognition, vol. 1, pp. 886–893, 2005.
[6] D. G. Lowe, 'Distinctive image features from scale-invariant keypoints,' in International journal of computer vision, vol. 60, pp. 91-110, 2004.
[7] A. Jain and R. Gupta, 'Gaussian filter threshold modulation for filtering flat and texture area of an image,' in International Conference on Advances in Computer Engineering and Applications, Ghaziabad, pp. 760-763, doi: 10.1109/ICACEA.2015.7164804, 2015.
[8] W. Gao, X. Zhang, L. Yang and H. Liu, 'An improved Sobel edge detection,' in 2010 3rd International Conference on Computer Science and Information Technology, pp. 67-71, doi: 10.1109/ICCSIT.2010.5563693, 2010.
[9] I. Setyawan and I. K. Timotius, 'Digital image hashing using local histogram of Oriented Gradients,' in 2014 6th International Conference on Information Technology and Electrical Engineering (ICITEE), pp. 1-4, doi: 10.1109/ICITEED.2014.7007903, 2014.
[10] H. Bay, T. Tuytelaars and L. V. Gool, 'Speeded-up robust features (SURF),' Computer vision and image understanding, vol.110, No.3, pp. 346-359, 2008.
[11] C. Yu and M. T. Manry, 'A Hessian matrix approach for training nonlinear networks,' in Proceedings 7th International Conference on Signal Processing, pp. 1514-1517 vol.2, doi: 10.1109/ICOSP.2004.1441615, 2004.
[12] D. S. Bolme, J. R. Beveridge, B. A. Draper and Y. M. Lui, 'Visual object tracking using adaptive correlation filters,' in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544-2550, doi: 10.1109/CVPR.2010.5539960, 2010.
[13] A. Bewley, Z. Ge, L. Ott, F. Ramos and B. Upcroft, 'Simple online and realtime tracking,' in IEEE International Conference on Image Processing (ICIP), pp. 3464-3468, doi: 10.1109/ICIP.2016.7533003, 2016.
[14] N. Wojke, A. Bewley and D. Paulus, 'Simple online and realtime tracking with a deep association metric,' in IEEE International Conference on Image Processing (ICIP), pp. 3645-3649, doi: 10.1109/ICIP.2017.8296962, 2017.
[15] Krizhevsky, Alex, I. Sutskever, and G. E. Hinton. 'Imagenet classification with deep convolutional neural networks.' Advances in neural information processing systems, 2012.
[16] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, 'Gradient-based learning applied to document recognition,' in Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, doi: 10.1109/5.726791, 1998.
[17] K. Hara, D. Saito and H. Shouno, 'Analysis of function of rectified linear unit used in deep learning,' in International Joint Conference on Neural Networks (IJCNN), pp. 1-8, doi: 10.1109/IJCNN.2015.7280578, 2015.
[18] K. He, X. Zhang, S. Ren and J. Sun, 'Deep Residual Learning for Image Recognition,' in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, doi: 10.1109/CVPR.2016.90, 2016.
[19] A. Shrestha and A. Mahmood, 'Review of Deep Learning Algorithms and Architectures,' in IEEE Access, vol. 7, pp. 53040-53065, doi: 10.1109/ACCESS.2019.2912200, 2019.
[20] WU, Yuxin; HE, Kaiming, 'Group normalization'. in Proceedings of the European conference on computer vision (ECCV), pp. 3-19, 2018.
[21] R. Chu, Y. Sun, Y. Li, Z. Liu, C. Zhang and Y. Wei, 'Vehicle Re-Identification With Viewpoint-Aware Metric Learning,' in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 8281-8290, doi: 10.1109/ICCV.2019.00837, 2019.
[22] J. Qian, W. Jiang, H. Luo, and H. Yu, 'Stripebased and Attribute-aware Network: A Twobranch Deep Model for Vehicle Re-identification,' Measurement Science and Technology, Vol. 31, no. 9, 2020.
[23] B. He, J. Li, Y. Zhao and Y. Tian, 'Part-Regularized Near-Duplicate Vehicle Re-Identification,' in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 3992-4000, doi: 10.1109/CVPR.2019.00412, 2019.
[24] J. Redmon and A. Farhadi, 'YOLOv3: An Incremental Improvement. Computer Vision and Pattern Recognition', IEEE Computer Vision Pattern Recongnition, pp. 1-8, 2018.
[25] E. Rublee, V. Rabaud, K. Konolige and G. Bradski, 'ORB: An efficient alternative to SIFT or SURF,' in 2011 International Conference on Computer Vision, pp. 2564-2571, doi: 10.1109/ICCV.2011.6126544, 2011.
[26] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, 'Image quality assessment: from error visibility to structural similarity,' in IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, doi: 10.1109/TIP.2003.819861, 2004.
[27] Y. Cheng, 'Mean shift, mode seeking, and clustering,' in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, no. 8, pp. 790-799, doi: 10.1109/34.400568, 1995.
[28] B. De Man and S. Basu, 'Distance-driven projection and backprojection,' in 2002 IEEE Nuclear Science Symposium Conference Record, pp. 1477-1480 vol.3, doi: 10.1109/NSSMIC.2002.1239600, 2002.
[29] F. Yu et al., 'BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning,' in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2633-2642, doi: 10.1109/CVPR42600.2020.00271, 2020.
[30] Z. Kalal, K. Mikolajczyk and J. Matas, 'Forward-Backward Error: Automatic Detection of Tracking Failures,' in International Conference on Pattern Recognition, Istanbul, pp. 2756-2759, doi: 10.1109/ICPR.2010.675, 2010.
[31] J. F. Henriques, R. Caseiro, P. Martins and J. Batista, 'High-Speed Tracking with Kernelized Correlation Filters,' in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 3, pp. 583-596, doi: 10.1109/TPAMI.2014.2345390, 2015.
[32] X. Liu, W. Liu, T. Mei, and H. Ma, “A deep learning-based approach to progressive vehicle re-identification for urban surveillance,” in European Conference on Computer Vision. Springer, pp. 869–884, 2016.
[33] H. Liu, Y. Tian, Y. Yang, L. Pang, and T. Huang, “Deep relative distance learning: Tell the difference between similar vehicles,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2167–2175, 2016.
[34] Hermans, Alexander, L. Beyer, and B. Leibe. 'In defense of the triplet loss for person re-identification.' arXiv preprint arXiv:1703.07737, 2017.
[35] Park, J., Woo, S., Lee, J.Y., Kweon. 'Bam: Bottleneck attention module. ' in Proc. of British Machine Vision Conference (BMVC), 2018.
[36] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. FeiFei, ' Imagenet: A large-scale hierarchical image database.', in CVPR, 2009.
[37] Diederik P Kingma and Jimmy Ba, 'Adam: A method for stochastic optimization.', arXiv preprint arXiv:1412.6980, 2014.
[38] S. Liao, Y. Hu, X. Zhu, and S. Li, 'Person re-identification by local maximal occurrence representation and metric learning.', in CVPR, 2015.
[39] T. Xiao, H. Li, W. Ouyang, and X. Wang, 'Learning deep feature representations with domain guided dropout for person re-identification.', in The IEEE Conference on CVPR, 2016.
[40] L. Yang, P. Luo, C. Change Loy, and X. Tang, 'A large-scale car dataset for fine-grained categorization and verification.', in CVPR, 2015.
[41] X. Liu, W. Liu, T. Mei, and H. Ma, 'A deep learning-based approach to progressive vehicle re-identification for urban surveillance. ', in ECCV, 2016.
[42] Y. Zhou and L. Shao, 'Cross-view gan based vehicle generation for re-identification. ', in BMVC, vol. 1, pp. 1–12, 2017.
[43] Z. Wang, L. Tang, X. Liu, Z. Yao, S. Yi, J. Shao, J. Yan, S. Wang, H. Li, and X. Wang, 'Orientation invariant feature embedding and spatial temporal regularization for vehicle re-identification. ', in ICCV, 2017.
[44] Y. Zhou and L. Shao, 'Aware attentive multi-view inference for vehicle re-identification.', in CVPR, 2018.
[45] X. Liu, W. Liu, T. Mei, and H. Ma, 'Provid: Progressive and multimodal vehicle reidentification for large-scale urban surveillance.', in IEEE Transactions on Multimedia, vol. 20, no. 3, pp. 645–658, 2017.
[46] X. Liu, S. Zhang, Q. Huang, and W. Gao, 'Ram: a region-aware deep model for vehicle reidentification.', in 2018 IEEE International Conference on Multimedia and Expo, 2018.
[47] P. Khorramshahi, A. Kumar, N. Peri, S. S. Rambhatla, Jun-Cheng Chen, and Rama Chellappa, 'A dual path model with adaptive attention for vehicle reidentification. ', arXiv preprint arXiv:1905.03397, 2019.
[48] Z. Tang, M. Naphade, S. Birchfield, J. Tremblay, W. Hodge, R. Kumar, S. Wang, and X. Yang, 'Pamtri: Pose-aware multi-task learning for vehicle re-identification using highly randomized synthetic data. ', in ICCV, 2019.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71716-
dc.description.abstract在這幾年,車輛的追蹤與辨識已經是越來越熱門的主題,更可以成為在自動駕駛領域中,不可或缺的一環。在傳統物體追蹤和重新辨識的技術上,大多是採用低階特徵,例如:邊緣檢測,來進行演算法架構的設計,但是往往會面臨到兩大問題: 偵測物體多視角現象和遮蔽,為了改善這兩個問題,人們開始嘗試其他不同的方法,由於硬體技術近年來的提升,在運算資源提升的幫助下,近年來深度學習技術快速發展,並且將深度學習應用在電腦視覺相關領域的研究更是不勝枚舉,因此在本論文中,針對這兩個問題,我們基於傳統方法和深度學習方法,提出兩種不同的演算法,來改善之前方法的不足。
第一個方法是基於傳統方法上來進行改善,我們利用混合特徵,包含局部、全域、重要部分和位置資訊,來對車輛原始圖片進行處理,根據這些特徵比對的結果,去計算相似分數,並利用相似分數去區分不同的車輛類別。
第二個方法是基於深度學習的架構來進行設計,在這個深度學習架構內,我們設計了三種不同面向的子模組,分別針對全域、區域和細部特徵資訊來進行重要特徵抽取,我們的方法相較於現今的方法,在指標性的資料集內取得相當好的表現。在本篇論文中,我們為了比較第一個方法跟現今方法的表現結果,我們收集了10組不同的車輛行進影片,包含夜間跟白天的情形,並考慮到多視角現象和遮蔽情形,根據我們所收集的資料集,我們所提出的第一個方法相較於其他現今的方法,表現是最好的。
zh_TW
dc.description.abstractVehicle tracking and re-identification become one of most popular topics in the present. Moreover, they are indispensable parts on self-driving vehicles. In traditional object tracking and re-identification techniques, we usually use low-level features, such as edge detection to design our algorithm. However, we often face two important problems on this topic: multi-viewpoint patterns and occlusions. In order to handle these two problems, people attend to utilize other methods. Due to the improvement of hardware technology and the help of increased computing resources, deep learning-based methods have developed rapidly in recent years and the researches on the application of deep learning-based algorithms in computer vision fields are even more numerous. In this thesis, we propose two different algorithms based on traditional and deep learning-based methods to improve the shortcomings of the previous methods in response to these two problems.
The first method is based on conventional methods to improve. We use hybrid features, including local, global, salient sections and location information to process the original vehicle image, and calculate the similarity score based on the comparison results of these features. Finally, we utilize similarity scores to distinguish different vehicle categories.
The second method is designed based on the deep learning-based architecture. In this deep learning-based structure, design three different oriented sub-modules to extract important features for global, regional, and detailed feature information. Our proposed method compared with the state-of-the-art approaches has achieved pretty good performance in benchmark datasets. In this thesis, in order to compare the performance of the first method with current methods, we have collected 10 sets of different vehicle driving videos, including night and day time conditions, and taking into account the multi-viewpoint phenomenon and occlusions. According to our collected dataset, the first method we proposed has the best performance compared to other current approaches.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:07:30Z (GMT). No. of bitstreams: 1
U0001-2310202014132500.pdf: 3855724 bytes, checksum: eebca97c3b7151f1962b0e0237d7e5d2 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis Organization 2
Chapter 2 Related Work 4
2.1 Basic Object Re-identification architecture 4
2.2 Conventional approach 4
2.2.1 An Improved Canny Edge Detection 5
2.2.2 Histograms of Oriented Gradients 9
2.2.3 Speed-Up Robust Features 11
2.3 Review on Existing Vehicle Tracking and Re-identification Algorithms 15
2.3.1 Visual Obejct Tracking using Adaptive Correlation Filters 15
2.3.2 Simple Online and Realtime Trakcing 15
2.3.3 Simple Online and Realtime Tracking with A Deep Association Metric 16
2.4 Deep Learning-based Method 16
2.4.1 Convolutional Neural Network (CNN) 16
2.4.2 Deep Residual Learning Network 18
2.4.3 Batch and Instance Normalization Network 20
2.5 Review on Deep Learning Based Vehicle Tracking and Re-identification Methods 20
2.5.1 Viewpoint-aware Nework 21
2.5.2 Two-branch Striped-based and Attribute-aware Deep Learning-based Network 21
2.5.3 Part-regularized Near-duplicate Vehicle Re-identification 21
Chapter 3 Proposed Conventional Rule-based Method for Vehicle Tracking and Re-identification 22
3.1 Object Detect and Exclude Overlapping Parts 24
3.2 Our proposed Re-identification Block 25
3.2.1 Global Features 26
3.2.2 Partial Similiarity 29
3.2.3 Salient Section 30
3.2.4 Position Correlation 32
Chapter 4 Simulation Results on the Proposed Conventional Rule-based Algorithm 34
4.1 Database 34
4.2 Database Construction 34
4.3 Experiment Setup and Implementation Details 35
4.4 Simulation Results 36
4.5 Evaluation 37
4.6 Visualization 37
Chapter 5 Proposed Deep Learning-based Method for Vehicle Tracking and Re-identification 46
5.1 The Proposed Method: Comprehensive Detail Refinement Algorithm 48
5.1.1 Overview 48
5.2 Global Attention Module 50
5.3 Local Refinement Module 52
5.4 Detail Module 54
Chapter 6 Simulation Results on the Proposed Deep Learning-based Vehicle Re-identification Algorithm 56
6.1 Datasets Analyze and Evaluation Protocols 56
6.2 Datasets Segmentation 57
6.3 Data Augmentation 57
6.4 Implementation Details 59
6.5 Comparison with State-of-the-art Methods 60
6.5 Visualization on VeRi-776 61
6.6 Visualization on VehicleID 61
Chapter 7 Conclusion and future work 64
7.1 Conclusion 64
7.2 Future work 65
REFERENCE 66
dc.language.isoen
dc.subject車輛追蹤zh_TW
dc.subject深度學習zh_TW
dc.subject車輛重新識別zh_TW
dc.subject捲積神經網絡zh_TW
dc.subjectDeep Learningen
dc.subjectVehicle Trackingen
dc.subjectVehicle Re-identificationen
dc.subjectConvolutional Neural Networken
dc.title基於混合特徵和深度學習模型應用於車輛追蹤與重新識別zh_TW
dc.titleBased on Hybrid Features and Deep Learning Model to Handle Vehicle Tracking and Re-identificationen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王鈺強(Yu-Chiang Frank Wang),吳沛遠(Pei-Yuan Wu),盧奕璋(Yi-Chang Lu)
dc.subject.keyword深度學習,車輛追蹤,車輛重新識別,捲積神經網絡,zh_TW
dc.subject.keywordDeep Learning,Vehicle Tracking,Vehicle Re-identification,Convolutional Neural Network,en
dc.relation.page71
dc.identifier.doi10.6342/NTU202004304
dc.rights.note有償授權
dc.date.accepted2020-10-23
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2310202014132500.pdf
  未授權公開取用
3.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved