請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71715完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃念祖(Nien-Tsu Huang) | |
| dc.contributor.author | Kai-Wei Chang | en |
| dc.contributor.author | 張凱崴 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:07:28Z | - |
| dc.date.available | 2022-01-15 | |
| dc.date.copyright | 2019-01-15 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-01-04 | |
| dc.identifier.citation | 1. Noble, R.T. and S.B. Weisberg, A review of technologies for rapid detection of bacteria in recreational waters. J Water Health., 2015. 3(4): p. 381-92.
2. McCoy, W.F. and A.A. Rosenblatt, HACCP-Based Programs for Preventing Disease and Injury from Premise Plumbing: A Building Consensus. Pathogens, 2015. 4(3): p. 513-28. 3. Gracias, K.S. and J.L. McKillip, A review of conventional detection and enumeration methods for pathogenic bacteria in food. Can J Microbiol, 2004. 50(11): p. 883-90. 4. Sigma-Aldrich, HybriScan Rapid Test System. 5. Abubakar, I., et al., A systematic review of the clinical, public health and cost-effectiveness of rapid diagnostic tests for the detection and identification of bacterial intestinal pathogens in faeces and food. Health Technology Assessment, 2007. 11(36). 6. Ahmed, A., et al., Biosensors for whole-cell bacterial detection. Clin Microbiol Rev, 2014. 27(3): p. 631-46. 7. Opota, O., et al., Blood culture-based diagnosis of bacteraemia: state of the art. Clin Microbiol Infect, 2015. 21(4): p. 313-22. 8. Wang, S., et al., Portable microfluidic chip for detection of Escherichia coli in produce and blood. Int J Nanomedicine, 2012. 7: p. 2591-600. 9. Petryayeva, E. and U.J. Krull, Localized surface plasmon resonance: nanostructures, bioassays and biosensing--a review. Anal Chim Acta, 2011. 706(1): p. 8-24. 10. Premasiri, W.R., et al., Rapid urinary tract infection diagnostics by surface-enhanced Raman spectroscopy (SERS): identification and antibiotic susceptibilities. Anal Bioanal Chem, 2017. 409(11): p. 3043-3054. 11. Premasiri, W.R., et al., The biochemical origins of the surface-enhanced Raman spectra of bacteria: a metabolomics profiling by SERS. Anal Bioanal Chem, 2016. 408(17): p. 4631-47. 12. Liu, C.Y., et al., Rapid bacterial antibiotic susceptibility test based on simple surface-enhanced Raman spectroscopic biomarkers. Sci Rep, 2016. 6: p. 23375. 13. Choi, J., et al., Direct, rapid antimicrobial susceptibility test from positive blood cultures based on microscopic imaging analysis. Sci Rep, 2017. 7(1): p. 1148. 14. Matsumoto, Y., et al., A Microfluidic Channel Method for Rapid Drug-Susceptibility Testing of Pseudomonas aeruginosa. PLoS One, 2016. 11(2): p. e0148797. 15. Kim, S.C., et al., Miniaturized Antimicrobial Susceptibility Test by Combining Concentration Gradient Generation and Rapid Cell Culturing. Antibiotics (Basel), 2015. 4(4): p. 455-66. 16. Choi, J., et al., Rapid antibiotic susceptibility testing by tracking single cell growth in a microfluidic agarose channel system. Lab Chip, 2013. 13(2): p. 280-287. 17. Etayash, H., et al., Microfluidic cantilever detects bacteria and measures their susceptibility to antibiotics in small confined volumes. Nat Commun, 2016. 7: p. 12947. 18. Mezger, A., et al., A general method for rapid determination of antibiotic susceptibility and species in bacterial infections. J Clin Microbiol, 2015. 53(2): p. 425-32. 19. Raman, C.V. and K.S. Krishnan, A New Type of Seconday Radiation. Nature, 1928. 121: p. 501. 20. 王俊凱, 拉曼光譜分析. 材料分析 第二版 中國材料科學學會 第18章, 2014. 21. Fleischmann, M., P.J. Hendra, and A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver eletrode. Chemical Physics Letters, 1974. 26(2): p. 163-166. 22. Campion, A. and P. Kambhampati, Surface-enhanced Raman scattering. Chemical Society Reviews, 1998. 27. 23. Ahamad, N.U., M. Al-Amin, and A. Ianoul, A Simple Approach to Engineer SERS Substrates aKnd Plasmonic Thin Film. Journal of Nanoparticles, 2014. 2014: p. 1-9. 24. Bobbitt, J.A. and R.P. Betts, The removal of bacteria from solutions by membrane filtration. Journal of Microbiological Methods, 1992. 16: p. 215-220. 25. Craythorn, J.M., et al., Membrane Filter Contact Technique for Bacteriological Sampling of Moist Surfaces. Journal of Clinical Microbiology, 1980. 12(2): p. 250-255. 26. Pettipher, G.L., et al., Rapid Membrane Filtration-Epifluorescent Microscopy Technique for Direct Enumeration of Bacteria in Raw Milk. Applied and Environmental Microbiology, 1980. 39(2): p. 423-429. 27. Kamińska, A., et al., Rapid detection and identification of bacterial meningitis pathogens in ex vivo clinical samples by SERS method and principal component analysis. Analytical Methods, 2016. 8(22): p. 4521-4529. 28. Wang, H.H., et al., Highly Raman-Enhancing Substrates Based on Silver Nanoparticle Arrays with Tunable Sub-10nm Gaps. Advanced Materials, 2006. 18(4): p. 491-495. 29. Hu, H. and R.G. Larson, Marangoni Effect Reverses Coffee-Ring Dopositions. The Journal of Physical Chemistry B, 2006. 110: p. 7090-7094. 30. Zelenin, S., et al., Microfluidic-based isolation of bacteria from whole blood for sepsis diagnostics. Biotechnol Lett, 2015. 37(4): p. 825-30. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71715 | - |
| dc.description.abstract | 細菌的鑑定及分類在各個領域都扮演重要的角色,例如水質與食物的檢驗以及細菌感染的臨床診斷。尤其對於較嚴重的細菌感染症狀,如敗血症等,更仰賴即時且可靠的細菌檢驗技術,才能降低其致死率。然而,目前臨床所使用細菌檢驗方法須耗時一至三天,等待血液中的病原菌在血瓶機中培養到一定的濃度,以利後續的分析;若要進行細菌的抗生素藥敏試驗 (Antibiotic Susceptibility Test, AST),則要再花費一至兩天的時間。因此,許多研究團隊致力於開發出新穎且更加快速的細菌檢測技術。表面增強拉曼散射 (surface-enhanced Raman scattering, SERS) 光學檢測技術,因具有高度專一性以及免分子標定的優點,已被應用於細菌檢測與藥敏試驗的研究領域。藉由分析細菌代謝物的分子光譜,此技術可減少抗生素藥敏試驗所花費的時間至數個小時;然而因病人血液中的病原菌濃度十分低,最耗時的血液培養流程仍是必須的步驟。為了解決這個問題,我們使用多孔性濾膜來捕捉並濃縮細菌,以增加細菌樣本的濃度進而縮短血液培養的流程。在此篇論文中,我們利用微流道系統整合多孔性濾膜與具有表面增強拉曼散射的底板,以達成細菌濃縮和其代謝物訊號的量測,藉此來檢測細菌並完成藥敏試驗。透過這個整合型系統,我們可以減少人工的操作步驟,在封閉的微流道中也能夠有較好的訊號均勻度,而最低可檢測到的細菌濃度則達到103/mL左右,因此能夠達成快速、免標定且即時的細菌檢測和抗生素藥敏試驗,並能大大減少檢驗中的人力使用與操作誤差。 | zh_TW |
| dc.description.abstract | Bacteria identification and characterization are significant issues in various research fields including microbial monitoring of water or food and clinical diagnosis of bacterial infection. A sensitive and reliable bacteria detection method is needed, especially for serious bacterial infection such as sepsis. Without timely and proper treatments, patients will suffer a high fatality rate. However, the conventional clinical bacteria detection process takes 1-3 days waiting for bacteria incubation in blood culture bottles in an automated culture system. Another 1-2 days are required for antibiotic susceptibility test (AST). Therefore, many researchers aim to develop rapid bacteria detection and AST techniques. Surface-enhanced Raman scattering (SERS), as a highly sensitive and label-free biomolecule detection method, can identify various bacteria species and understand antibiotic susceptibility by analyzing bacteria secreted metabolites. Although the time taken for AST can be reduced to several hours using SERS technique, the most time-consuming blood culturing process is still necessary since the bacteria concentration in patients’ blood is too low. To solve this problem, a bacteria enrichment technique, membrane filtration, is introduced in order to shorten the blood culturing time. In this thesis, a microfluidic system integrating membrane filtration and the SERS-active substrate was developed for performing on-chip bacterial enrichment and in-situ SERS measurements for bacteria detection and AST. With this integrated system, manual operating procedures are minimized and uniform SERS detection is ensured in the closed microfluidic chamber. Meanwhile, a meaningful SERS signal could be detected from a low concentration of bacteria (~103/mL). A rapid, label-free and real-time bacteria detection and AST technique can hence be achieved without intensive human labor and manual errors. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:07:28Z (GMT). No. of bitstreams: 1 ntu-108-R05945012-1.pdf: 3152784 bytes, checksum: c3ae8ff5377f0bd124b8c0626a60d55e (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES viii LIST OF TABLES xii Chapter 1 Introduction 13 1.1 Research Background 13 1.1.1 Bacteria detection and AST 13 1.1.2 SERS and rapid AST 15 1.1.3 Challenges of SERS-based rapid AST 17 1.2 Literature Review 17 1.2.1 Rapid bacteria detection and AST 17 1.2.2 Summary 19 1.3 Research Motivation 22 1.4 Thesis structure 23 Chapter 2 Experimental Design 24 2.1 SERS detection on the two-dimensional SERS substrate 24 2.1.1 Raman scattering 24 2.1.2 Surface-enhanced Raman scattering 25 2.1.3 Two-dimensional SERS-active substrate 28 2.2 Membrane filtration 28 2.2.1 Applications on bacteria of membrane filtration 28 2.2.2 Membrane filtration with SERS-based detection 28 2.2.3 Microfluidic membrane filtration 29 2.3 Microfluidic device design 30 2.3.1 PDMS device 30 2.3.2 PMMA device 30 Chapter 3 Materials and Methods 33 3.1 Materials 33 3.2 Bacteria preparation 33 3.3 Device fabrication 34 3.3.1 PDMS device fabrication 34 3.3.2 PMMA device fabrication 34 3.4 System setup (of the PMMA device) 34 3.5 Operation procedures (of the PMMA device) 35 3.6 SERS measurement and spectral processing 36 3.7 Centrifugal purification protocol 37 3.8 Cell counting on the membrane filters 37 Chapter 4 Results and Discussion 38 4.1 Preliminary results of the PDMS device 38 4.1.1 Washing efficiency 38 4.1.2 E. coli secreted metabolites collection 39 4.1.3 Discussion 40 4.2 Filtration capability 41 4.3 Washing efficiency 43 4.4 Uniformity of SERS detection 44 4.5 E. coli secreted metabolites detection 45 4.6 Off-chip AST using centrifugal purification 47 4.7 On-chip RAST using microfluidic membrane filtration 49 Chapter 5 Conclusion 50 Chapter 6 Future Work 51 References 53 | |
| dc.language.iso | en | |
| dc.subject | 表面增強拉曼散射 | zh_TW |
| dc.subject | 微流道 | zh_TW |
| dc.subject | 抗生素藥敏試驗 | zh_TW |
| dc.subject | microfluidics | en |
| dc.subject | AST | en |
| dc.subject | SERS | en |
| dc.title | 使用微流道系統整合多孔性濾膜與表面增強拉曼散射應用於快速細菌檢測與抗生素藥敏試驗 | zh_TW |
| dc.title | Rapid Bacteria Detection and Antibiotic Susceptibility Test Using A Microfluidic Device Integrating Membrane Filtration and Surface-Enhanced Raman Scattering | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王玉麟(Yuh-Lin Wang),王俊凱(Juen-Kai Wang),董奕鍾(Yi-Chung Tung) | |
| dc.subject.keyword | 微流道,抗生素藥敏試驗,表面增強拉曼散射, | zh_TW |
| dc.subject.keyword | microfluidics,AST,SERS, | en |
| dc.relation.page | 55 | |
| dc.identifier.doi | 10.6342/NTU201900011 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-01-04 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 3.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
