請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71713完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾宇鳳 | |
| dc.contributor.author | Yi Hsiao | en |
| dc.contributor.author | 蕭毅 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:07:25Z | - |
| dc.date.available | 2024-01-15 | |
| dc.date.copyright | 2019-01-15 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2019-01-04 | |
| dc.identifier.citation | 1. Thomas, D. W.; Burns, J.; Audette, J.; Carrol, A.; Dow-Hygelund, C.; Hay, M., Clinical development success rates 2006-2015. San Diego: Biomedtracker/Washington, DC: BIO/Bend: Amplion 2016.
2. Pammolli, F.; Magazzini, L.; Riccaboni, M., The productivity crisis in pharmaceutical R&D. Nature reviews Drug discovery 2011, 10 (6), 428-438. 3. Hodgson, J., ADMET--turning chemicals into drugs. Nature Biotechnology 2001, 19 (8), 722. 4. Health, U. D. o.; Services, H., Innovation or stagnation? Challenge and opportunity on the critical path to new medical products. http://www. fda. gov/ScienceResearch/SpecialTopics/CriticalPathInitiative/CriticalPathOpportu nitiesReports/ucm077262. htm Accessed July 19, 2010 2004. 5. Lynch, T. a. P., A, The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. American family physician 2007, 76, 391. 6. Lewis, D. F., The CYP2 family: models, mutants and interactions. Xenobiotica 1998, 28 (7), 617-661. 7. Levy, R. e. H., Metabolic drug interactions. Lippincott Williams & Wilkins: 2000. 8. Stresser, D. M., High-Throughput Screening of Human Cytochrome P450 Inhibitors Using Fluorometric Substrates: Methodology for 25 Enzyme/Substrate Pairs. In Optimization in Drug Discovery: In Vitro Methods, Springer: 2004; pp 215--230. 9. Guengerich, F., Cytochrome p450 and chemical toxicology. PerspectiVe 2008, 21 (1), 71. 10. Siramshetty, V. B.; Nickel, J.; Omieczynski, C.; Gohlke, B.-O.; Drwal, M. N.; Preissner, R., WITHDRAWN—a resource for withdrawn and discontinued drugs. Nucleic acids research 2016, 44 (D1), D1080-D1086. 11. Perrin, M. J. a. S., Rajesh N and Vandenberg, Jamie I and Hill, Adam P, Human ether-a-go-go related gene (hERG) K+ channels: function and dysfunction. Progress in biophysics and molecular biology 2008, 98 (2), 137- 148. 12. Curran, M. E. a. S., Igor and Timothy, Katherine W and Vincen, G Michael and Green, Eric D and Keating, Mark T, A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 1995, 80 (5), 795- 803. 13. Roy, M.-L.; Dumaine, R.; Brown, A. M., HERG, a primary human ventricular target of the nonsedating antihistamine terfenadine. Circulation 1996, 94 (4), 817-823. 14. Suessbrich, H.; Waldegger, S.; Lang, F.; Busch, A., Blockade of HERG channels expressed in Xenopus oocytes by the histamine receptor antagonists terfenadine and astemizole. FEBS letters 1996, 385 (1-2), 77-80. 15. Zhou, Z.; Vorperian, V. R.; Gong, Q.; Zhang, S.; January, C. T., Block of HERG potassium channels by the antihistamine astemizole and its metabolites desmethylastemizole and norastemizole. Journal of cardiovascular electrophysiology 1999, 10 (6), 836-843. 16. Rampe, D.; Roy, M.-L.; Dennis, A.; Brown, A. M., A mechanism for the proarrhythmic effects of cisapride (Propulsid): high affinity blockade of the human cardiac potassium channel HERG. FEBS letters 1997, 417 (1), 28-32. 17. Witchel, H. J., Druginduced hERG Block and Long QT Syndrome. Cardiovascular therapeutics 2011, 29 (4), 251-259. 18. Witchel, H. J. a. M., James T and Mitcheson, John S and Hancox, Jules C, Troubleshooting problems with in vitro screening of drugs for QT interval prolongation using HERG K+ channels expressed in mammalian cell lines and Xenopus oocytes. Journal of pharmacological and toxicological methods 2002, 48 (2), 65-80. 19. Yu, H.-b. a. Z., Bei-yan and Wang, Xiao-liang and Li, Min, Investigation of miscellaneous hERG inhibition in large diverse compound collection using automated patch-clamp assay. Acta Pharmacologica Sinica 2016, 37 (1), 111- 123. 20. Schmalhofer, W. A. a. S., Andrew M and Thomas, Brande S and Felix, John P and Haedo, Rodolfo J and Solly, Kelli and Kiss, Laszlo and Kaczorowski, Gregory J and Garcia, Maria L, A pharmacologically validated, high-capacity, functional thallium flux assay for the human Ether-a-go-go related gene potassium channel. Assay and drug development technologies 2010, 8 (6), 714-726. 21. Zou, B. a. Y., Haibo and Babcock, Joseph J and Chanda, Pritam and Bader, Joel S and McManus, Owen B and Li, Min, Profiling diverse compounds by flux-and electrophysiology-based primary screens for inhibition of human Ether-a-go-go related gene potassium channels. Assay and drug development technologies 2010, 8 (6), 743-754. 22. Griffiths, A. J.; Miller, J. H.; Suzuki, D. T.; Lewontin, R. C.; Gelbart, W. M., Relation between mutagens and carcinogens. 2000. 23. Sharma, A.; Kumar, R.; Varadwaj, P. K.; Ahmad, A.; Ashraf, G. M., A comparative study of support vector machine, artificial neural network and bayesian classifier for mutagenicity prediction. Interdisciplinary Sciences: Computational Life Sciences 2011, 3 (3), 232-239. 24. Mortelmans, K.; Zeiger, E., The Ames Salmonella/microsome mutagenicity assay. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2000, 455 (1), 29-60. 25. Maron, D. M.; Ames, B. N., Revised methods for the Salmonella mutagenicity test. Mutation Research/Environmental Mutagenesis and Related Subjects 1983, 113 (3-4), 173-215. 26. Ames, B. N.; McCann, J.; Yamasaki, E., Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutation Research/Environmental Mutagenesis and Related Subjects 1975, 31 (6), 347-363. 27. Kazius, J.; McGuire, R.; Bursi, R., Derivation and validation of toxicophores for mutagenicity prediction. Journal of medicinal chemistry 2005, 48 (1), 312-320. 28. Guha, R.; Schürer, S. C., Utilizing high throughput screening data for predictive toxicology models: protocols and application to MLSCN assays. Journal of computer-aided molecular design 2008, 22 (6-7), 367-384. 29. Pardridge, W. M., Blood–brain barrier delivery. Drug discovery today 2007, 12 (1), 54-61. 30. Patlewicz, G.; Jeliazkova, N.; Safford, R.; Worth, A.; Aleksiev, B., An evaluation of the implementation of the Cramer classification scheme in the Toxtree software. SAR and QSAR in Environmental Research 2008, 19 (5-6), 495-524. 31. Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P. W.; Tang, Y., admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. ACS Publications: 2012. 32. Pires, D. E.; Blundell, T. L.; Ascher, D. B., pkCSM: predicting small- molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of medicinal chemistry 2015, 58 (9), 4066-4072. 33. Daina, A.; Michielin, O.; Zoete, V., SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports 2017, 7, 42717. 34. Su, B.-H.; Tu, Y.-s.; Lin, C.; Shao, C.-Y.; Lin, O. A.; Tseng, Y. J., Rule- based prediction models of cytochrome P450 inhibition. Journal of chemical information and modeling 2015, 55 (7), 1426-1434. 35. Shao, C.-Y.; Su, B.-H.; Tu, Y.-S.; Lin, C.; Lin, O. A.; Tseng, Y. J., CypRules: a rule-based P450 inhibition prediction server. Bioinformatics 2015, btv043. 36. Quinlan, R., Data mining tools See5 and C5. 0. 2004. 37. Quinlan, J. R., C4. 5: programs for machine learning. Elsevier: 2014. 38. Yap, C. W., PaDELdescriptor: An open source software to calculate molecular descriptors and fingerprints. Journal of computational chemistry 2011, 32 (7), 1466-1474. 39. Hong, H.; Xie, Q.; Ge, W.; Qian, F.; Fang, H.; Shi, L.; Su, Z.; Perkins, R.; Tong, W., Mold2, molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics. Journal of chemical information and modeling 2008, 48 (7), 1337-1344. 40. Bolton, E. E.; Wang, Y.; Thiessen, P. A.; Bryant, S. H., PubChem: integrated platform of small molecules and biological activities. Annual reports in computational chemistry 2008, 4, 217-241. 41. Czodrowski, P., hERG me out. Journal of chemical information and modeling 2013, 53 (9), 2240-2251. 42. Gaulton, A.; Bellis, L. J.; Bento, A. P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B., ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic acids research 2011, 40 (D1), D1100-D1107. 43. Landrum, G., RDKit: Open-Source Cheminformatics Software. 2015. URL http://www. rdkit. org/, https://github. com/rdkit/rdkit. 44. Geurts, P.; Ernst, D.; Wehenkel, L., Extremely randomized trees. Machine learning 2006, 63 (1), 3-42. 45. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V., Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 2011, 12 (Oct), 2825-2830. 46. Shen, M.-y.; Su, B.-H.; Esposito, E. X.; Hopfinger, A. J.; Tseng, Y. J., A comprehensive support vector machine binary hERG classification model based on extensive but biased end point hERG data sets. Chemical research in toxicology 2011, 24 (6), 934-949. 47. Fioravanzo, E.; Cazzolla, N.; Durando, L.; Ferrari, C.; Mabilia, M.; Ombrato, R.; Parenti, M. D., General and independent approaches to predict HERG affinity values. Internet Electron J Mol Des 2005, 4, 625-646. 48. Hagadone, T. R., Molecular substructure similarity searching: efficient retrieval in two-dimensional structure databases. Journal of Chemical Information and Computer Sciences 1992, 32 (5), 515-521. 49. Cuissart, B.; Touffet, F.; Crémilleux, B.; Bureau, R.; Rault, S., The maximum common substructure as a molecular depiction in a supervised classification context: experiments in quantitative structure/biodegradability relationships. Journal of chemical information and computer sciences 2002, 42 (5), 1043-1052. 50. Hsu, K.-H.; Su, B.-H.; Tu, Y.-S.; Lin, O. A.; Tseng, Y. J., Mutagenicity in a Molecule: Identification of Core Structural Features of Mutagenicity Using a Scaffold Analysis. PloS one 2016, 11 (2), e0148900. 51. Klopman, G., MULTICASE 1. A hierarchical computer automated structure evaluation program. Molecular Informatics 1992, 11 (2), 176-184. 52. Mostrag-Szlichtyng, A.; Zaldívar Comenges, J.-M.; Worth, A. P., Computational toxicology at the European commission's joint research centre. Expert opinion on drug metabolism & toxicology 2010, 6 (7), 785-792. 53. Ridings, J.; Barratt, M.; Cary, R.; Earnshaw, C.; Eggington, C.; Ellis, M.; Judson, P.; Langowski, J.; Marchant, C.; Payne, M., Computer prediction of possible toxic action from chemical structure: an update on the DEREK system. Toxicology 1996, 106 (1), 267-279. 54. Roberts, G.; Myatt, G. J.; Johnson, W. P.; Cross, K. P.; Blower, P. E., LeadScope†: Software for Exploring Large Sets of Screening Data. Journal of chemical information and computer sciences 2000, 40 (6), 1302-1314. 55. Chang, C.-Y.; Hsu, M.-T.; Esposito, E. X.; Tseng, Y. J., Oversampling to overcome overfitting: exploring the relationship between data set composition, molecular descriptors, and predictive modeling methods. Journal of chemical information and modeling 2013, 53 (4), 958-971. 56. Vapnik, V., The nature of statistical learning theory. Springer science & business media: 2013. 57. Vapnik, V. N.; Vapnik, V., Statistical learning theory. Wiley New York: 1998; Vol. 1. 58. Senese, C. L.; Duca, J.; Pan, D.; Hopfinger, A. J.; Tseng, Y. J., 4D- fingerprints, universal QSAR and QSPR descriptors. Journal of chemical information and computer sciences 2004, 44 (5), 1526-1539. 59. Cronin, M. T. a. S., T Wayne, Pitfalls in QSAR. Journal of Molecular Structure: THEOCHEM 2003, 622 (1), 39-51. 60. Wang, N.-N.; Dong, J.; Deng, Y.-H.; Zhu, M.-F.; Wen, M.; Yao, Z.-J.; Lu, A.-P.; Wang, J.-B.; Cao, D.-S., ADME properties evaluation in drug discovery: prediction of Caco-2 Cell permeability using a combination of NSGA-II and boosting. Journal of chemical information and modeling 2016, 56 (4), 763-773. 61. ULC, C. C. G., Molecular Operating Environment (MOE), 2013.08. 2017. 62. Geldenhuys, W. J.; Mohammad, A. S.; Adkins, C. E.; Lockman, P. R., Molecular determinants of blood–brain barrier permeation. Therapeutic delivery 2015, 6 (8), 961-971. 63. Takasato, Y.; Rapoport, S. I.; Smith, Q. R., An in situ brain perfusion technique to study cerebrovascular transport in the rat. American Journal of Physiology-Heart and Circulatory Physiology 1984, 247 (3), H484-H493. 64. Pan, D.; Iyer, M.; Liu, J.; Li, Y.; Hopfinger, A. J., Constructing optimum blood brain barrier QSAR models using a combination of 4D-molecular similarity measures and cluster analysis. Journal of chemical information and computer sciences 2004, 44 (6), 2083-2098. 65. Vilar, S.; Chakrabarti, M.; Costanzi, S., Prediction of passive blood–brain partitioning: straightforward and effective classification models based on in silico derived physicochemical descriptors. Journal of Molecular Graphics and Modelling 2010, 28 (8), 899-903. 66. Clark, D. E., Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood– brain barrier penetration. Journal of pharmaceutical sciences 1999, 88 (8), 815- 821. 67. Suenderhauf, C.; Hammann, F.; Huwyler, J., Computational prediction of blood-brain barrier permeability using decision tree induction. Molecules 2012, 17 (9), 10429-10445. 68. Ghose, A. K.; Crippen, G. M., Atomic physicochemical parameters for threedimensional structuredirected quantitative structureactivity relationships I. Partition coefficients as a measure of hydrophobicity. Journal of computational chemistry 1986, 7 (4), 565-577. 31 69. Burden, F. R., Molecular identification number for substructure searches. Journal of Chemical Information and Computer Sciences 1989, 29 (3), 225-227. 70. Pearlman, R. S.; Smith, K., Novel software tools for chemical diversity. Perspectives in Drug Discovery and Design 1998, 9 (11), 339-353. 71. Ertl, P.; Rohde, B.; Selzer, P., Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. Journal of medicinal chemistry 2000, 43 (20), 3714-3717. 72. Van Rossum, G. In Python Programming Language, USENIX Annual Technical Conference, 2007; p 36. 73. Weininger, D.; Weininger, A.; Weininger, J. L., SMILES. 2. Algorithm for generation of unique SMILES notation. Journal of Chemical Information and Computer Sciences 1989, 29 (2), 97-101. 74. James, C. A., Daylight theory manual. http://www. daylight. com/dayhtml/doc/theory/theory. toc. html 2004. 75. Dalby, A.; Nourse, J. G.; Hounshell, W. D.; Gushurst, A. K.; Grier, D. L.; Leland, B. A.; Laufer, J., Description of several chemical structure file formats used by computer programs developed at Molecular Design Limited. Journal of chemical information and computer sciences 1992, 32 (3), 244-255. 76. O'Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G. R., Open Babel: An open chemical toolbox. Journal of cheminformatics 2011, 3 (1), 33. 77. Ihaka, R.; Gentleman, R., R: a language for data analysis and graphics. Journal of computational and graphical statistics 1996, 5 (3), 299-314. 78. Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M. R.; Smith, J. C.; Kasson, P. M.; van der Spoel, D., GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 2013, 29 (7), 845-854. 79. Python-docx – A Python library for creating and updating Microsoft Word (.docx) files—python-docx 0.8.6 documentation. https://python- docx.readthedocs.io/en/latest/ (accessed 11/4). 80. Shipman, J. W., Tkinter 8.4 reference: a GUI for Python. dostopno na http://infohost. nmt. edu/tcc/help/pubs/tkinter. pdf 2013. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71713 | - |
| dc.description.abstract | 在現代藥物開發的過程中,如何增加藥物開發成功的機率,一直是個十分重要 的問題。數以百計的候選藥物,往往只有數個最後可以進入市場。為了增加藥物開發 成功的機率,在進入臨床試驗前,進行藥物的 ADMET(吸收、分佈、代謝、分泌、毒 性)性質研究,已經是普遍性的作法。然而,若以傳統方式,全以生物實驗來進行臨床 前測試,有著損耗大量金錢、時間的缺點。因而近年來,許多電腦模型被提出來做這 些 ADMET 性質測試的替代方案。以電腦模型來做測試有著快速、省錢的優勢,同時 也能有不錯的預測效果。儘管如此,現有被提出的工具有著整合性低、預測缺乏結構 資訊的缺點。在此研究中,我們完成了一個以虛擬老鼠為名的軟體原型,結合多種重 要的臨床前測試所會用到的指標並提供預測基於的結構資訊。包括 hERG 抑制劑預 測、細胞色素 P450 抑制劑預測、致突變性檢測(Ames 測試)、血腦障壁穿透預測、細 胞毒性預測、Caco-2 細胞吸收模型預測。輔以方便使用的圖形介面與可輸出報告的功 能。讓藥物的臨床前測試能以快速、有效的方式進行。同時我們也對使用到的模型進 一步以上市後下架、開發過程中中止開發的藥物做驗證。證實我們所提出的軟體、模 型是確實有其功能與預測的效果。 | zh_TW |
| dc.description.abstract | In drug discovery, a critical challenge is that how to improve the drug development method to increase the probability of success of the projects. On average, the success rate of a drug from phase I to approval (to market) is only 9.6%. It’s not an easy task. Particularly, the attrition rate is around 75% in preclinical stage, which is the most challenging phase of drug development projects. To make drug candidate to enter phase I, it has been become standard process recently to preform ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) profiling before entering clinical trial. However, experimental determination of these properties is time-consuming and costly. For example, to test Caco-2 permeability, it takes one and half of month at the price of 1,200 US dollars from non-GLP (Good Laboratory Practice) laboratory. Therefore, computational methods have been proposed in many preclinical studies to predict those as an alternative approach in preclinical stage. It’s obvious the computational methods have the advantage of being fast and cheap compared to traditional experiments. However, only few web-based tools have integrated predictions of different ADMET properties. The web-based tools are concerned with information security during internet transmission. Those tools also have drawbacks that they don’t provide structural information and only simply provide prediction results. In this study, we finished a prototype, named as Virtual Rat, which not only provide predictions of important ADMET properties, but also the structural information that the prediction results based on. The properties we included in Virtual Rat are predictions of hERG inhibition, cytochrome P450 (CYPs) inhibition, mutagenicity (Ames test), blood-brain barrier penetration, cytotoxicity, and Caco-2 permeability. All of these properties are the reasons of high attrition rate and withdrawn rate in drug discovery. As a stand-alone application with easy-use user interface and functionality to export report in Microsoft word format for further usage, Virtual Rat makes preclinical screening of properties mentioned above fast and effective. We also validate our models using 578 withdrawn or discontinued drugs since 1960s to confirm the availability of Virtual Rat. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:07:25Z (GMT). No. of bitstreams: 1 ntu-106-R04945027-1.pdf: 1723837 bytes, checksum: b17f413d2461e4b8c1a9dc4d44edcabc (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract iv Table of Contents v List of Figures vii List of Tables viii Chapter 1 Introduction 1 1.1Background 1 1.2 Important Endpoints in Preclinical Drug Development 2 1.2.1 Cytochromes P450 (CYPs) Inhibition 2 1.2.2 Human Ether-à-go-go-related Gene (hERG) Inhibition 3 1.2.3 Mutagenicity 4 1.2.4 Cytotoxicity 5 1.2.5 Caco-2 Permeability 5 1.2.6 Blood-Brain Barrier (BBB) Penetration 5 1.3 Related Software and Packages 5 1.3.1 admetSAR 6 1.3.2 pkCSM 6 1.3.3 SwissADME 6 1.4 Limitations of Current Software and Packages 6 Chapter 2 Material and Methods 7 2.1 Cytochromes P450 (CYPs) Inhibition 7 2.2 hERG 9 2.3 Mutagenicity 10 2.4 Cytotoxicity 11 2.5 Caco-2 Permeability 11 2.6 Blood-Brain Barrier (BBB) penetration 13 2.7 Software Architecture and Implementations 2.8 Summary of Models Used in Virtual Rat 14 2.9 Validation of Models 17 Chapter 3 Results and Discussion 18 3.1 User Interface 18 3.2 Comparison with Traditional Experimental Methods 23 3.3 Comparison with Current Software and Packages 24 Chapter 4 Conclusion 26 Reference 27 | |
| dc.language.iso | en | |
| dc.subject | 性質預測 | zh_TW |
| dc.subject | 新藥開發 | zh_TW |
| dc.subject | QSAR | en |
| dc.subject | ADMET | en |
| dc.subject | property prediction. | en |
| dc.title | 虛擬老鼠:系統性電腦預測臨床前 ADMET 參數 | zh_TW |
| dc.title | Virtual Rat: A Systematic in silico Preclinical ADMET Prediction | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李昂,潘秀玲 | |
| dc.subject.keyword | 新藥開發,性質預測, | zh_TW |
| dc.subject.keyword | QSAR,ADMET,property prediction., | en |
| dc.relation.page | 32 | |
| dc.identifier.doi | 10.6342/NTU201804267 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-01-07 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 1.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
