Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71705
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊瑋(Jiunn-Wei Chen)
dc.contributor.authorWei-Yang Liuen
dc.contributor.author劉韋陽zh_TW
dc.date.accessioned2021-06-17T06:07:10Z-
dc.date.available2020-11-12
dc.date.copyright2020-11-12
dc.date.issued2020
dc.date.submitted2020-10-24
dc.identifier.citation[1] V. M. Braun, A. Vladimirov, and J. H. Zhang, Physical Review D 99, 14013
(2019). i, 9, 20, 21, 22
[2] J. Owens, A. Accardi, andW. Melnitchouk, Phys. Rev. D 87, 094012 (2013). v, 20, 32
[3] R. Feynman, The behavior of hadron collisions at extreme energies (highenergy
collisions proc. 3rd int. conf., stony brook, ny) ed cn yang et al, 1969. 1
[4] J. D. Bjorken and E. A. Paschos, Phys. Rev. 185, 1975 (1969). 2
[5] J. Collins, Foundations of Perturbative QCD, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology, Cambridge University Press, 2011. 2
[6] J. C. Collins, D. E. Soper, and G. F. Sterman, Factorization of Hard Processes in QCD, volume 5, pages 1–91, 1989. 2
[7] L. Szymanowski, Qcd collinear factorization, its extensions and the partonic
distributions, 2012. 2
[8] H.-n. Li, page 95 (2014), Comments: 41 pages, contribution to the 1st Asia-Europe-Pacific School of High-Energy Physics, Fukuoka, Japan, 14 - 27 Oct 2012. 2
[9] R. L. Jaffe and X. Ji, Nuclear Physics, Section B 375, 527 (1992). 3
[10] X. Ji, Phys. Rev. Lett. 110, 262002 (2013). 4
[11] X. Ji, Sci. China Phys. Mech. Astron. 57, 1407 (2014). 4
[12] Y.-Q. Ma and J.-W. Qiu, Phys. Rev. Lett. 120, 022003 (2018). 4
[13] T. Izubuchi, X. Ji, L. Jin, I. W. Stewart, and Y. Zhao, Phys. Rev. D98, 056004 (2018). 4, 5
[14] Y.-S. Liu et al., (2019). 4
[15] X. Xiong, X. Ji, J.-H. Zhang, and Y. Zhao, Phys. Rev. D90, 014051 (2014). 5
[16] X. Ji and J.-H. Zhang, Phys. Rev. D92, 034006 (2015). 5
[17] X. Ji, A. SchACfer, X. Xiong, and J.-H. Zhang, Phys. Rev. D 92, 014039 (2015). 5
[18] X. Xiong and J.-H. Zhang, Phys. Rev. D92, 054037 (2015). 5
[19] X. Ji, J.-H. Zhang, and Y. Zhao, Nucl. Phys. B924, 366 (2017). 5
[20] C. Monahan, Phys. Rev. D97, 054507 (2018). 5
[21] I. W. Stewart and Y. Zhao, Phys. Rev. D97, 054512 (2018). 5
[22] M. Constantinou and H. Panagopoulos, Phys. Rev. D96, 054506 (2017). 5
[23] J. Green, K. Jansen, and F. Steffens, Phys. Rev. Lett. 121, 022004 (2018). 5
[24] X. Xiong, T. Luu, and U.-G. Meißner, (2017). 5
[25] W. Wang, S. Zhao, and R. Zhu, Eur. Phys. J. C78, 147 (2018). 5
[26] W. Wang and S. Zhao, JHEP 05, 142 (2018). 5
[27] J. Xu, Q.-A. Zhang, and S. Zhao, Phys. Rev. D97, 114026 (2018). 5
[28] J.-W. Chen, S. D. Cohen, X. Ji, H.-W. Lin, and J.-H. Zhang, Nucl. Phys. B911, 246 (2016). 5
[29] J.-H. Zhang, J.-W. Chen, X. Ji, L. Jin, and H.-W. Lin, Phys. Rev. D95, 094514 (2017). 5
[30] T. Ishikawa, Y.-Q. Ma, J.-W. Qiu, and S. Yoshida, (2016). 5
[31] J.-W. Chen, X. Ji, and J.-H. Zhang, Nucl. Phys. B915, 1 (2017). 5
[32] X. Ji, J.-H. Zhang, and Y. Zhao, Phys. Rev. Lett. 120, 112001 (2018). 5
[33] T. Ishikawa, Y.-Q. Ma, J.-W. Qiu, and S. Yoshida, Phys. Rev. D96, 094019 (2017). 5
[34] C. Alexandrou et al., Nucl. Phys. B923, 394 (2017). 5
[35] J.-W. Chen et al., Phys. Rev. D97, 014505 (2018). 5
[36] J.-W. Chen et al., (2017). 5
[37] H.-W. Lin, J.-W. Chen, T. Ishikawa, and J.-H. Zhang, Phys. Rev. D98, 054504 (2018). 5
[38] J.-W. Chen et al., (2017). 5
[39] H.-n. Li, Phys. Rev. D94, 074036 (2016). 5
[40] C. Monahan and K. Orginos, JHEP 03, 116 (2017). 5
[41] A. Radyushkin, Phys. Lett. B767, 314 (2017). 5
[42] G. C. Rossi and M. Testa, Phys. Rev. D96, 014507 (2017). 5
[43] C. E. Carlson and M. Freid, Phys. Rev. D95, 094504 (2017). 5
[44] R. A. Brice˜A±o, J. V. Guerrero, M. T. Hansen, and C. J. Monahan, Phys. Rev. D 98, 014511 (2018). 5
[45] T. J. Hobbs, Phys. Rev. D97, 054028 (2018). 5
[46] Y. Jia, S. Liang, L. Li, and X. Xiong, JHEP 11, 151 (2017). 5
[47] S.-S. Xu, L. Chang, C. D. Roberts, and H.-S. Zong, Phys. Rev. D97, 094014 (2018). 5
[48] Y. Jia, S. Liang, X. Xiong, and R. Yu, Phys. Rev. D98, 054011 (2018). 5
[49] G. Spanoudes and H. Panagopoulos, Phys. Rev. D98, 014509 (2018). 5
[50] G. Rossi and M. Testa, Phys. Rev. D98, 054028 (2018). 5
[51] Y.-S. Liu et al., (2018). 5
[52] X. Ji, Y. Liu, and I. Zahed, Phys. Rev. D99, 054008 (2019). 5
[53] S. Bhattacharya, C. Cocuzza, and A. Metz, Phys. Lett. B788, 453 (2019). 5
[54] A. V. Radyushkin, Phys. Lett. B788, 380 (2019). 5
[55] J.-H. Zhang, X. Ji, A. Sch˜A Cfer, W. Wang, and S. Zhao, Phys. Rev. Lett.
122, 142001 (2019). 5
[56] Z.-Y. Li, Y.-Q. Ma, and J.-W. Qiu, Phys. Rev. Lett. 122, 062002 (2019). 5
[57] V. M. Braun, A. Vladimirov, and J.-H. Zhang, Phys. Rev. D99, 014013 (2019). 5, 7, 11, 37
[58] W. Detmold et al., Eur. Phys. J. A 55, 193 (2019). 5
[59] R. S. Sufian et al., (2020). 5
[60] C. Shugert et al., Pion valence quark PDF from lattice QCD, in 37th International Symposium on Lattice Field Theory, 2020. 5
[61] J. R. Green, K. Jansen, and F. Steffens, Phys. Rev. D 101, 074509 (2020). 5
[62] V. Braun, K. Chetyrkin, and B. Kniehl, (2020). 5
[63] H.-W. Lin, Int. J. Mod. Phys. A 35, 2030006 (2020). 5
[64] M. Bhat, K. Cichy, M. Constantinou, and A. Scapellato, (2020). 5
[65] L.-B. Chen, W. Wang, and R. Zhu, Phys. Rev. D 102, 011503 (2020). 5
[66] X. Ji, (2020). 5
[67] L.-B. Chen, W. Wang, and R. Zhu, (2020). 5
[68] L.-B. Chen, W. Wang, and R. Zhu, (2020). 5
[69] C. Alexandrou, G. Iannelli, K. Jansen, and F. Manigrasso, (2020). 5
[70] Z. Fan et al., (2020). 5
[71] X. Ji et al., (2020). 5
[72] H.-W. Lin, J.-W. Chen, S. D. Cohen, and X. Ji, Phys. Rev. D91, 054510 (2015). 5
[73] C. Alexandrou et al., Phys. Rev. D92, 014502 (2015). 5
[74] C. Alexandrou et al., Phys. Rev. D96, 014513 (2017). 5
[75] H.-W. Lin et al., Phys. Rev. Lett. 121, 242003 (2018). 5
[76] C. Alexandrou et al., Phys. Rev. Lett. 121, 112001 (2018). 5
[77] J.-W. Chen et al., (2018). 5
[78] C. Alexandrou et al., Phys. Rev. D98, 091503 (2018). 5
[79] H.-W. Lin et al., Phys. Rev. Lett. 121, 242003 (2018). 5
[80] Z.-Y. Fan, Y.-B. Yang, A. Anthony, H.-W. Lin, and K.-F. Liu, Phys. Rev. Lett. 121, 242001 (2018). 5
[81] Y.-S. Liu et al., (2018). 5
[82] W. Wang, J.-H. Zhang, S. Zhao, and R. Zhu, (2019). 5
[83] H.-W. Lin and R. Zhang, Phys. Rev. D100, 074502 (2019). 5
[84] K.-F. Liu, (2020). 5
[85] R. Zhang, Z. Fan, R. Li, H.-W. Lin, and B. Yoon, Phys. Rev. D101, 034516 (2020). 5
[86] J.-W. Chen et al., (2018). 5
[87] T. Izubuchi et al., Phys. Rev. D 100, 034516 (2019). 5
[88] X. Gao et al., (2020). 5
[89] H.-W. Lin, J.-W. Chen, Z. Fan, J.-H. Zhang, and R. Zhang, (2020). 5
[90] Y. Chai et al., (2020). 5
[91] S. Bhattacharya et al., (2020). 5
[92] S. Bhattacharya et al., Phys. Rev. D 102, 034005 (2020). 5
[93] S. Bhattacharya et al., (2020). 5
[94] Z. Fan, R. Zhang, and H.-W. Lin, (2020). 5
[95] R. Zhang, H.-W. Lin, and B. Yoon, (2020). 5
[96] J.-H. Zhang et al., Nucl. Phys. B939, 429 (2019). 5
[97] R. Zhang, C. Honkala, H.-W. Lin, and J.-W. Chen, (2020). 5
[98] J.-W. Chen, H.-W. Lin, and J.-H. Zhang, (2019). 5
[99] C. Alexandrou et al., (2020). 5
[100] H.-W. Lin, (2020). 5
[101] C. Alexandrou et al., Phys. Rev. D 99, 114504 (2019). 5
[102] X. Ji, P. Sun, X. Xiong, and F. Yuan, Phys. Rev. D91, 074009 (2015). 5
[103] X. Ji, L.-C. Jin, F. Yuan, J.-H. Zhang, and Y. Zhao, (2018). 5
[104] M. A. Ebert, I. W. Stewart, and Y. Zhao, Phys. Rev. D 99, 034505 (2019). 5
[105] M. A. Ebert, I. W. Stewart, and Y. Zhao, JHEP 09, 037 (2019). 5
[106] M. A. Ebert, I. W. Stewart, and Y. Zhao, JHEP 03, 099 (2020). 5
[107] X. Ji, Y. Liu, and Y.-S. Liu, Nucl. Phys. B 955, 115054 (2020). 5
[108] X. Ji, Y. Liu, and Y.-S. Liu, (2019). 5
[109] M. A. Ebert, S. T. Schindler, I. W. Stewart, and Y. Zhao, (2020). 5
[110] P. Shanahan, M. L.Wagman, and Y. Zhao, Phys. Rev. D 101, 074505 (2020). 5
[111] P. Shanahan, M. Wagman, and Y. Zhao, (2020). 5
[112] Q.-A. Zhang et al., (2020). 5
[113] K.-F. Liu and S.-J. Dong, Phys. Rev. Lett. 72, 1790 (1994). 5
[114] W. Detmold and C. J. Lin, Physical Review D - Particles, Fields, Gravitation
and Cosmology 73, 1 (2006). 5
[115] V. Braun and D. M¨uller, Eur. Phys. J. C 55, 349 (2008). 5
[116] G. S. Bali et al., Eur. Phys. J. C 78, 217 (2018). 5
[117] G. S. Bali et al., Phys. Rev. D 98, 094507 (2018). 5
[118] W. Detmold, I. Kanamori, C. D. Lin, S. Mondal, and Y. Zhao, PoS LATTICE2018,
106 (2018). 5
[119] J. Liang, T. Draper, K.-F. Liu, A. Rothkopf, and Y.-B. Yang, Phys. Rev. D
101, 114503 (2020). 5
[120] Y.-Q. Ma and J.-W. Qiu, Phys. Rev. D98, 074021 (2018). 5
[121] Y.-Q. Ma and J.-W. Qiu, Int. J. Mod. Phys. Conf. Ser. 37, 1560041 (2015). 5
[122] A. J. Chambers et al., Phys. Rev. Lett. 118, 242001 (2017). 5
[123] A. V. Radyushkin, Phys. Rev. D96, 034025 (2017). 5
[124] K. Orginos, A. Radyushkin, J. Karpie, and S. Zafeiropoulos, Phys. Rev. D
96, 094503 (2017). 5
[125] A. Radyushkin, Phys. Lett. B 781, 433 (2018). 5
[126] A. Radyushkin, Phys. Rev. D 98, 014019 (2018). 5
[127] J.-H. Zhang, J.-W. Chen, and C. Monahan, Phys. Rev. D 97, 074508 (2018). 5
[128] J. Karpie, K. Orginos, and S. Zafeiropoulos, JHEP 11, 178 (2018). 5
[129] B. Jo´o et al., JHEP 12, 081 (2019). 5
[130] A. V. Radyushkin, Phys. Rev. D 100, 116011 (2019). 5
[131] B. Jo´o et al., Phys. Rev. D 100, 114512 (2019). 5
[132] I. Balitsky, W. Morris, and A. Radyushkin, Phys. Lett. B 808, 135621 (2020). 5
[133] A. Radyushkin, Int. J. Mod. Phys. A 35, 2030002 (2020). 5
[134] B. Jo´o et al., (2020). 5
[135] K. Can et al., (2020). 5
[136] H.-W. Lin et al., Prog. Part. Nucl. Phys. 100, 107 (2018). 5
[137] K. Cichy and M. Constantinou, Adv. High Energy Phys. 2019, 3036904 (2019). 5
[138] Y. Zhao, PoS LATTICE2019, 267 (2020). 5
[139] X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang, and Y. Zhao, (2020). 5
[140] X. Ji, (2020). 5
[141] D. J. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974). 6, 8, 9, 12
[142] B. Lautrup, Phys. Lett. B 69, 109 (1977). 6, 8, 9, 12
[143] M. Beneke, Physics Reports 317, 1 (1999). 8, 9
[144] A. Grozin, Lectures on QED and QCD, in 3rd Dubna International
Advanced School of Theoretical Physics, pages 1–156, 2005. 12
[145] M. Beneke, Phys. Rept. 317, 1 (1999). 12
[146] A. H. Hoang, A. Jain, I. Scimemi, and I. W. Stewart, AIP Conference Proceedings 1182, 503 (2009). 33
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71705-
dc.description.abstract我們從強子的等矢量準部份子分佈函數(isovector quasi parton distribution function)中的氣泡鏈圖研究了重整子歧義(renormalon ambiguity)。我們確認了 Braun Vladimirov 和 Zhang 的推論,即最具貢獻的紅外區重整子歧義在形式上是具有ΛQCD^2/(xPz)^2等級的效應,其中x表示部份子動量分數,Pz表示強子動量。我們還通過指出具有發散前因子的δ(x)貢獻來闡明在重整子歧義中夸克數守恆是如何被滿足的。為了進一步量化這種來自重整子歧義的效應,我們將氣泡鏈圖的計算展開至三圈費曼圖,並發現這些結果在RI/MOM重整化準部份子分佈與MS部份子分佈的匹配核(matching kernel)中表現了出色的收斂性。這表明在該方案(scheme)中,在三圈圖的等級下,重整子不會導致匹配核的微擾展開緩慢收斂。我們同時還證明了使用R方案(R-scheme)可以改善來自最具貢獻的重整子 歧義所導致的緩慢收斂性。zh_TW
dc.description.abstractWe investigate the renormalon ambiguity from bubble-chain diagrams in the isovector quasi-parton distribution function of a hadron. We confirm the assertion by Braun, Vladimirov and Zhang that the leading IR renormalon ambiguity is formally a twist-4 effect of order ΛQCD^2/(xPz)^2, with x the parton momentum fraction and Pz the hadron momentum. We also clarify how quark number conservation in the renormalon ambiguity is satisfied by identifying a delta-function-like contribution with a divergent prefactor. To further quantify this effect, we study the bubble-chain diagrams to three-loops and find excellent convergence for the matching kernel between the RI/MOM renormalized quasi-parton distribution and the MS-bar parton distribution. This suggests that renormalons do not cause a slow convergence to the perturbative kernel in this scheme at the three-loop order. The improvement of convergence using the R-scheme to remove the leading renormalon ambiguity is also demonstrated.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:07:10Z (GMT). No. of bitstreams: 1
U0001-2410202013502100.pdf: 1768106 bytes, checksum: 7f07548cb1c30cddf45abb735751e06d (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsAbstract i
List of Figures v
1 Introduction 1
1.1 Parton model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Large momentum effective theory . . . . . . . . . . . . . . . . . 4
1.3 Renormalon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1 Factorization in MS scheme . . . . . . . . . . . . . . . . 7
1.3.2 Borel transform . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.3 Bubble-chain insertion . . . . . . . . . . . . . . . . . . . 9
2 Renormalon Ambiguity in Quasi-PDFs 11
2.1 Borel series with bubble chain insertion . . . . . . . . . . . . . . 11
2.1.1 One-loop diagrams with bubble-chain insertion . . . . . . 13
2.1.2 Borel series of PDF and q-PDF for a single-quark state . . 16
2.2 Renormalon ambiguity in momentum space . . . . . . . . . . . . 18
2.3 Renormalon effect in coordinate space . . . . . . . . . . . . . . . 21
2.4 Bubble-chain contribution in fixed order perturbation . . . . . . . 23
2.4.1 Tree-level result . . . . . . . . . . . . . . . . . . . . . . 24
2.4.2 One-loop result . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 R-scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.1 Matching formula in R-scheme . . . . . . . . . . . . . . 34
iii
iv CONTENTS
2.5.2 Quasi-PDFs in R-scheme with different P0
z . . . . . . . . 35
3 Conclusion 37
Appendix 39
A Integrals for Feynman parameters . . . . . . . . . . . . . . . . . 39
A.1 Appell hypergeometric function . . . . . . . . . . . . . . 41
A.2 Hypergeometric function . . . . . . . . . . . . . . . . . . 41
A.3 Feynman parameterization integral with expansion . . . 45
B Integrals in the light front . . . . . . . . . . . . . . . . . . . . . . 53
Reference 55
dc.language.isozh-TW
dc.subject部分子分布函數zh_TW
dc.subject重整子zh_TW
dc.subject大動量有效理論zh_TW
dc.subject量子色動力學zh_TW
dc.subjectquantum chromodynamicsen
dc.subjectLarge momentum effective theoryen
dc.subjectparton distribution functionen
dc.subjectrenormalonen
dc.title在準部份子分布中的重整子效應zh_TW
dc.titleRenormalon Effects in Quasi Parton Distributionsen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.author-orcid0000-0003-0938-4832
dc.contributor.oralexamcommittee李湘楠(Hsiang-nan Li),林及仁(Chi-Jen David Lin)
dc.subject.keyword量子色動力學,大動量有效理論,部分子分布函數,重整子,zh_TW
dc.subject.keywordquantum chromodynamics,Large momentum effective theory,parton distribution function,renormalon,en
dc.relation.page63
dc.identifier.doi10.6342/NTU202004305
dc.rights.note有償授權
dc.date.accepted2020-10-26
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
U0001-2410202013502100.pdf
  未授權公開取用
1.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved