請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7168
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王凡 | zh_TW |
dc.contributor.author | 林其政 | zh_TW |
dc.contributor.author | Qi-Zheng Lin | en |
dc.date.accessioned | 2021-05-19T17:39:57Z | - |
dc.date.available | 2024-08-19 | - |
dc.date.copyright | 2019-08-26 | - |
dc.date.issued | 2019 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | [1] Y. LeCun, L. Bottou, Y. Bengio, and P. J. P. o. t. I. Haffner, "Gradient-based learning applied to document recognition," vol. 86, no. 11, pp. 2278-2324, 1998.
[2] F. Rosenblatt, "The perceptron: a probabilistic model for information storage and organization in the brain," vol. 65, no. 6, p. 386, 1958. [3] M. Zinkevich, "Online convex programming and generalized infinitesimal gradient ascent," in Proceedings of the 20th International Conference on Machine Learning (ICML-03), 2003, pp. 928-936. [4] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer, "Online passive-aggressive algorithms," vol. 7, no. Mar, pp. 551-585, 2006. [5] M. Dredze, K. Crammer, and F. Pereira, "Confidence-weighted linear classification," in Proceedings of the 25th international conference on Machine learning, 2008, pp. 264-271: ACM. [6] T. Yeh, T.-H. Chang, and R. C. Miller, "Sikuli: using GUI screenshots for search and automation," in Proceedings of the 22nd annual ACM symposium on User interface software and technology, 2009, pp. 183-192: ACM. [7] A. Mesbah, E. Bozdag, and A. Van Deursen, "Crawling Ajax by inferring user interface state changes," in 2008 Eighth International Conference on Web Engineering, 2008, pp. 122-134: IEEE. [8] C.-H. Yu, "Using image classification for automatic page analysis on the testing of Web APPs", Master Thesis of Dept. Electrical Engineering, National Taiwan University, Jan. 2018. [9] C.-L. Li, "Predicting the topics of GUI elements with both NLP and image classification techniques", Master Thesis of Dept. Electrical Engineering, National Taiwan University, Jul. 2018. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7168 | - |
dc.description.abstract | 隨著網路與智慧型手機的普及,網頁及手機應用程式如雨後春筍般出現。若是一個應用程式在功能上或性能上有缺陷的情況下上架,它很快就會在市場中消逝,並造成開法者巨大的損失。因此,如何對網頁及手機應用程式進行有效的測試成為一個至關重要的議題。
當進行圖形介面程式的測試時,我們需要一個爬蟲來盡可能攫取圖形介面中的資訊,藉以設計相應的測試腳本。在圖形介面程式中,通常包含文字與圖像的部分。對於圖像的部分,我們難以單憑網路爬蟲解析其本質。然而,藉由圖像分類的技術,我們可以識別圖像所代表的意義。這麼一來,我們便能完整且準確的理解整個圖形介面的內容,以產生適合的測試腳本。 在這篇論文中,我們蒐集了31490張應用程式中常見的圖示,包含57種不同的種類,並利用卷積神經網路的技術在此資料集上訓練出圖像分類的模型。我們採用了適當的資料擴增方法,使得在預測現實世界程式中的的圖像時能達很高的準確度。此外,我們建立了一個可以持續更新模型的架構。 | zh_TW |
dc.description.abstract | As the internet and smart phones become more and more common, plentiful web and mobile applications show up. If an application is published with even some tiny flaws in functionality or performance, it will fade away in the market rapidly, and the developers will suffer tremendous losses. Consequently, how to test web and mobile applications effectively and efficiently become an important issue.
When conducting software testing for GUI applications, we need a crawler to grab the information of the GUI contents as much as possible in order to devise test scripts accordingly. It is general that there are both text contents and image contents in GUI applications. For the image contents, we may not always resolve the essence of them only by a crawler. However, we can recognize the meaning of image contents with the aid of image classification techniques. By doing so, we can understand the whole GUI contents thoroughly and accurately and generate suitable test scripts. In this thesis, we collect 31490 images of 57 different classes commonly seen in real applications and use CNN to train a model to classify the images. We adopt some appropriate methods of data augmentation to reach high accuracy of predicting image contents in real-world applications. Besides, we build a framework update our model continuously. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T17:39:57Z (GMT). No. of bitstreams: 1 ntu-108-R06921054-1.pdf: 1702395 bytes, checksum: 2cf13beb208b78e51b63dab831c2671c (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES vii Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 2 1.3 Contribution 4 Chapter 2 Preliminaries 5 2.1 Crawler 5 2.2 Convolutional Neural Network 5 2.3 Online Learning 7 Chapter 3 Related Work 8 3.1 Sikuli 8 3.2 Crawljax 9 3.3 Tesseract 9 3.4 Academic Work 10 Chapter 4 IconNet 11 4.1 Overview 11 4.2 Data Preprocessing 12 4.3 Data Augmentation 13 4.3.1 Random Resized Cropping 13 4.3.2 Random Color Inverting 13 4.3.3 Color Jittering 14 4.4 Network Architecture 15 4.5 Implementation 16 Chapter 5 Online Learning based on Client-Server Model 18 5.1.1 Server 19 5.1.2 Client 20 Chapter 6 Experiments 22 6.1 Dataset 22 6.2 Results 23 Chapter 7 Conclusion 26 REFERENCE 27 | - |
dc.language.iso | en | - |
dc.title | 利用影像分類技術識別網頁及手機程式中之圖形介面元件 | zh_TW |
dc.title | Using Image Classification Techniques to Recognize GUI Elements in Web and Mobile Applications | en |
dc.type | Thesis | - |
dc.date.schoolyear | 107-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 戴顯權;張純明;陳銘憲;洪一平 | zh_TW |
dc.contributor.oralexamcommittee | ;;; | en |
dc.subject.keyword | 軟體測試,圖像分類,卷積神經網路,主從式架構, | zh_TW |
dc.subject.keyword | software testing,image classification,convolutional neural network,client-server model, | en |
dc.relation.page | 28 | - |
dc.identifier.doi | 10.6342/NTU201903613 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2019-08-15 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 電機工程學系 | - |
dc.date.embargo-lift | 2024-08-26 | - |
顯示於系所單位: | 電機工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-2.pdf 目前未授權公開取用 | 1.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。