請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71665
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 傅立成(Li-Chen Fu) | |
dc.contributor.author | Meng-Hao Chou | en |
dc.contributor.author | 周孟皓 | zh_TW |
dc.date.accessioned | 2021-06-17T06:05:58Z | - |
dc.date.available | 2019-01-21 | |
dc.date.copyright | 2019-01-21 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2019-01-16 | |
dc.identifier.citation | K. Meller and C. Theiss, 'Atomic force microscopy and confocal laser scanning microscopy on the cytoskeleton of permeabilised and embedded cells,' Ultramicroscopy, vol. 106, no. 4, pp. 320-325, Mar. 2006.
S. Kondra, J. Laishram, J. Ban, E. Migliorini, V. D. Foggia, M. Lazzarino, V. Torre, and M. E. Ruaro, 'Integration of confocal and atomic force microscopy images,' Journal of Neuroscience Methods, vol. 177, no. 1, pp. 94-107, Feb. 2009. M. S. Kuyukina, I. B. Ivshina, I. O. Korshunova, and E. V. Rubtsova, 'Assessment of bacterial resistance to organic solvents using a combined confocal laser scanning and atomic force microscopy (CLSM/AFM),' Journal of Microbiological Methods, vol. 107, pp. 23-29, Dec. 2014. D. P. Oyarzún, O. E. L. Pérez, M. L. Teijelo, C. Zúñiga, E. Jeraldo, D. A. Geraldo, and R. Arratia-Perez, 'Atomic force microscopy (AFM) and 3D confocal microscopy as alternative techniques for the morphological characterization of anodic TiO2 nanoporous layers,' Materials Letters, vol. 165, pp. 67-70, Feb. 2016. S. V. Bhat, T. Sultana, A. Körnig, S. McGrath, Z. Shahina, and T. E. Dahms, 'Correlative atomic force microscopy quantitative imaging-laser scanning confocal microscopy quantifies the impact of stressors on live cells in real-time,' Scientific reports, vol. 8, no. 1, pp. 8305, May 2018. D. W. Liu, H. C. Chen, K. Y. Chang, M. H. Chou, Y. L. Liu, J. W. Wu, M. L. Chiang, and L. C. Fu, 'Design of a High-speed and High-precision Hybrid Scanner with a New Path Planning Strategy Based on Spatial Entropy,' in Proc. 2018 Annual American Control Conference, Milwaukee, pp. 2946-2951, Jun. 2018. Y. Zhang, Y. Fang, J. Yu, and X. Dong, 'Note: A novel atomic force microscope fast imaging approach: Variable-speed scanning,' Review of Scientific Instruments, vol. 82, no. 5, pp. 056103, May 2011. X. Ren, Y. Fang, H. Lu, and Y. Wu, 'An on-line scanning time allocation based variable speed scanning method for atomic force microscopies,' in Proc. 2015 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale, Changchun, pp. 245-250, Oct. 2015. K. Wang, C. Manzie, and D. Nešić, 'Extremum-seeking-based adaptive scan for atomic force microscopy,' in Proc. IEEE 56th Annu. Conf. on Decision and Control, Melbourne, pp. 2114-2119, Dec. 2017. J. Curie and P. Curie, 'Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées,' Bull. Soc. Fr. Mineral., vol. 3, pp. 90-93, 1880. P. J. Chen and S. T. Montgomery, 'A macroscopic theory for the existence of the hysteresis and butterfly loops in ferroelectricity,' Ferroelectrics, vol. 23, pp. 199-207, 1980. M. Minsky, 'Microscopy apparatus,' U.S. Patent No. 3013467, Dec. 19, 1961. Y. Tan, W. Wang, C. Xu, and S. Zhang, 'Laser confocal feedback tomography and nano-step height measurement,' Scientific Reports, vol. 3, pp. 2971, Oct. 2013. Schematic diagram of the principle of CLSM, http://bitesizebio.com/19958/what-is-confocal-laser-scanning-microscopy/. J. Canny, 'A computational approach to edge detection,' in IEEE Transactions on pattern analysis and machine intelligence, vol. 8, pp. 679-698, Nov. 1986. W. C. Liu, M. H. Chou, K. Y. Chang, D. W. Liu, J. W. Wu, and L. C. Fu, 'A Self-Designed Laser Scanning Differential Confocal Microscopy with a Novel Vertical Scan Algorithm for Fast Image Scanning,' in Proc. International Federation of Automatic Control, Toulouse, pp. 3221-3226, Jul. 2017. K. Y. Chang, Y. L. Liu, D. W. Liu, M. H. Chou, J. W. Wu, and L. C. Fu, ' A fast CLSM undersampling image reconstruction framework with precise stage positioning for random measurements,' in Proc. 11th Asian Control Conference, Gold Coast, pp. 1122-1127, Dec. 2017. B. H. W. Hendriks, W. C. J. Bierhoff, J. J. L. Horikx, A. E. Desjardins, C. A. Hezemans, G. W. Lucassen, and N. Mihajlovic, 'High-resolution resonant and nonresonant fiber-scanning confocal microscope,' Journal of Biomedical Optics, vol. 16, no. 2, pp. 026007, Feb. 2011. H. Edwards, L. Taylor, W. Duncan, and A. J. Melmed, 'Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor,' Journal of Applied Physics, vol. 82, no. 3, pp. 980-984, Aug. 1997. R. Keys, ' Cubic convolution interpolation for digital image processing,' IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 29, no. 6, pp. 1153-1160, Dec. 1981 SEM image of the TGF-11 calibration grating, http://www.spmtips.com/test-structures-TGF11-series.html. T. R. Thomas, Rough Surfaces, 2nd ed. vol. 2. London: Imperial College Press, 1999. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71665 | - |
dc.description.abstract | 原子力顯微鏡是一種高精度的探針掃描儀器,能夠在奈米級的分辨率下繪製樣本的三維表面,而雷射共軛焦掃描顯微鏡是一種掃描具非破壞性的光學檢測系統,由於在垂直高度上有次微米級的分辨率,而被廣泛用於構築生物細胞及工程材料的三維輪廓。然而,兩種顯微鏡卻有各自的缺點,原子力顯微鏡雖具有高精度的掃描能力,但掃描時間過長且掃描範圍過小。雷射共軛焦掃描顯微鏡具有快速且大範圍掃描的能力,但解析度受限於光學繞射極限,解析度無法達到奈米級。因此,近年來有許多研究結合這兩種顯微鏡來達到高速大範圍且高精度的掃描。
然而,在結合這兩台顯微鏡時,卻有幾個整合上的問題,第一,兩台顯微鏡在掃描時間上具有數量級的差異,原子力顯微鏡需要數分鐘至數十分鐘來掃描長寬約為數十微米的範圍,而在相同範圍下,雷射共軛焦顯微鏡僅需數十秒,比較下來原子力顯微鏡的掃描時間過長會拖垮整體掃描速度。第二,若兩台顯微鏡的座標未經過校正的話,便無法正確的判斷彼此的相對位置,進而導致掃描上的對位問題。 本論文中,結合了上述兩種顯微鏡以及長行程 平台,並開發共同運作的演算法。首先在掃描前會用先利用共軛焦顯微鏡對原子力顯微鏡做位置校正,之後用原子力顯微鏡對長行程 平台作校正。校正完後,透過雷射共軛焦顯微鏡進行一次大範圍掃描,之後利用邊緣檢測法來找出感興趣的掃描範圍,並更進一步利用變速掃描節省原子力顯微鏡掃描的時間,藉此來提升整體的掃描速度,之後透過演算法來規劃兩顯微鏡與長行程 平台的路徑,並結合兩顯微鏡的掃描結果來構築一張快速大範圍且高精度的三維掃描影像。 | zh_TW |
dc.description.abstract | Atomic force microscope (AFM) is a powerful technology that has ability to sketch the 3D topography of the sample in nanoscale resolution. On the other hand, confocal laser scanning microscope (CLSM) is a non-destructive optical inspection system in sub-micro resolution and widely used in three-dimensional profile of biological samples and engineering material. However, both of them have their own long-standing shortcomings. AFM suffers from a lower scanning speed and smaller scanning range. The resolution of the CLSM cannot reach nanometer level due to the optical diffraction. In order to overcome these limitations, many researches dedicated to the integration of AFM and CLSM so to achieve high-speed, large-range and high-precision scanning.
However, there is an upcoming problems when AFM and CLSM are combined together. The scanning time in AFM is great more than that in CLSM. For micro-size scanning range, AFM takes several minutes to tens of minutes to scan while CLSM only takes tens of seconds. In addition, if the coordinates of the two microscopes are not correctly calibrated, the relative position of two microscopes cannot be accurately obtained, which may cause alignment problems. In this thesis, we design a hybrid microscope which combines AFM, CLSM and a long travel range positioning stage (LTRPS) and develop a novel cooperative fast algorithm to achieve high-speed, large-range and high-precision scan. First, the calibration of the microscopes will be implemented. Next, CLSM starts a large range scan first and then define the region of interesting (ROI) by edge detection. Next, the scan regions of the AFM are arranged based on the ROI and adaptive scanning region method is proposed to reduce the scanning time. Next, apply variable speed scanning to increase the AFM scanning speed. Finally, we compare sample features to build a fast, large-range, high-precision 3D scan image. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T06:05:58Z (GMT). No. of bitstreams: 1 ntu-107-R05921005-1.pdf: 3866352 bytes, checksum: e26f183a795d311b841e56207b9f3f84 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 I 摘要 II TABLE OF CONTENTS V LIST OF FIGURES VIII LIST OF TABLES XI Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Review 2 1.2.1 Hybrid microscope system 2 1.2.2 Fast scanning in AFM 6 1.3 Contribution 8 1.4 Thesis Organization 9 Chapter 2 Preliminaries 10 2.1 Fundamentals of Piezoelectric Stage 10 2.1.1 Piezoelectric effect 10 2.1.2 Hysteresis phenomenon 11 2.2 Operation Principle of AFM 12 2.2.1 Tip-sample interaction modes 14 2.2.2 AFM scanning schemes 16 2.3 Operation Principle of CLSM 18 2.3.1 Confocal laser scanning microscope 19 2.3.2 Galvanometer scanner 22 2.4 Canny Edge Detection 24 Chapter 3 Hardware Design 25 3.1 CLSM Subsystem 26 3.1.1 CLSM galvo scanning system 27 3.1.2 CLSM optical measuring system 29 3.2 AFM Subsystem 32 3.2.1 Piezo scan subsystem 33 3.2.2 Probe measurement subsystem 34 3.3 LTRPS Subsystem 36 3.4 Control related hardware devices 39 Chapter 4 Methodology 40 4.1 System Calibration 40 4.2 Method of ROI Determination 45 4.3 AFM adaptive scanning region 50 4.4 Variable Speed Scanning 57 4.5 The merging method 60 Chapter 5 Experiment 63 5.1 Experimental Setup 63 5.2 Calibration 66 5.3 Scanning result 68 5.3.1 CLSM scanning results for grating 69 5.3.2 AFM scanning results for grating 70 5.3.3 CLSM scanning results for arrow 74 5.3.4 AFM scanning results for arrow 75 Chapter 6 Conclusion and Future Work 80 REFERENCE 81 | |
dc.language.iso | zh-TW | |
dc.title | 複合原子力顯微鏡與共軛焦雷射掃描顯微鏡之新式掃描 | zh_TW |
dc.title | Novel Micro Scanning with Integrated Atomic Force Microscope and Confocal Laser Scanning Microscope | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 顏家鈺(Jia-Yu Yan),陳永耀(Yong-Yao Chen),練光祐(Guang-You Lian),連豊力(Li-Li Lian) | |
dc.subject.keyword | 原子力顯微鏡,雷射共軛焦顯微鏡,系統整合,大範圍掃描,路徑規劃, | zh_TW |
dc.subject.keyword | Atomic force microscope (AFM),confocal laser scanning microscope (CLSM),system integration,large-range scan,high-precision scan,region of interesting, | en |
dc.relation.page | 82 | |
dc.identifier.doi | 10.6342/NTU201900099 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-01-16 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
顯示於系所單位: | 電機工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 3.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。