Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7164
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張惠婷
dc.contributor.authorWen-Chun Chanen
dc.contributor.author詹文君zh_TW
dc.date.accessioned2021-05-19T17:39:56Z-
dc.date.available2022-08-16
dc.date.available2021-05-19T17:39:56Z-
dc.date.copyright2019-08-16
dc.date.issued2019
dc.date.submitted2019-08-14
dc.identifier.citation王振瀾、林玉含(1990)優良品種油茶之油脂成分提煉及性質分析。林業試驗所研究報告季刊5:11-15。
王振瀾、尹華文、劉文玉(1994)茶油穩定性探討及生育酚與固醇類成分之分析。林業試驗所研究報告季刊 9: 73-86。
中華民國國家標準CNS 3647(2003)食用油脂檢驗法-酸價之測定。經濟部標準檢驗局。
中華民國國家標準CNS 3650(2003)食用油脂檢驗法-過氧化價之測定。經濟部標準檢驗局。
中華民國國家標準CNS14876(2004)食用油脂檢驗法-穩定性指數之測定。經濟部標準檢驗局。
中華民國國家標準CNS15817(2015)食用苦茶油(油茶油)。經濟部標準檢驗局。
尹華文、陳正豐、呂勝由(2009)超臨界二氧化碳萃取苦茶油及茶粕之優異性。林業研究專訊16:13-16。
尹華文、呂勝由、陳正豐(2010)苦茶油、茶籽油與茶樹精油之辨別、萃取及其利用。林業研究專訊 17: 5-10。
李敏雄、王美苓、閔丙宇(1990)甲基酯化方法對脂肪酸分析結果之影響。食品科學17: 1-10。
許富蘭、黃裕星、徐光平、楊正釧(2015)談食安風暴下的新風潮-自己榨油。林業研究專訊22:1-5。
蔣慎思、劉瓊峰、許富蘭、許俊凱(2016)臺灣的黃金液體-苦茶油。林業研究專訊23:33-38。
謝靜敏、黃裕星(2013)臺灣油茶產業發展現況調查。林業研究專訊20:13-22。
Adams, R. P. (2007) Identification of essential oil components by gas chromatography / mass spectroscopy. 4th ed. IL, USA: Allured Publishing Corporation pp. 804.
Aktaş, N., K. E. Gerçekaslan and T. Uzlaşır (2018) The effect of some pre-roasting treatments on quality characteristics of pumpkin seed oil. Oilseeds and fats, Crops and Lipids 25: A301.
Amarowicz, R. (2009a) Antioxidant activity of Maillard reaction products. European Journal of Lipid Science and Technology 111: 109-111.
Amarowicz, R. (2009b) Squalene: a natural antioxidant? European Journal of Lipid Science and Technology 111: 411-412.
Anjum, F., F. Anwar, A. Jamil and M. Iqbal (2006) Microwave roasting effects on the physico-chemical composition and oxidative stability of sunflower seed oil. Journal of the American Oil Chemists' Society 83: 777-784.
Aytac, Z. and T. Uyar (2016) Antioxidant activity and photostability of α-tocopherol/β-cyclodextrin inclusion complex encapsulated electrospun polycaprolactone nanofibers. European Polymer Journal 79: 140-149.
Bai, S. H., I. Darby, T. Nevenimo, G. Hannet, D. Hannet, M. Poienou, E. Grant, P. Brooks, D. Walton, B. Randall and H. M. Wallace (2017) Effects of roasting on kernel peroxide value, free fatty acid, fatty acid composition and crude protein content. Public Library of Science 12: e0184279.
Bumrungpert, A., P. Pavadhgul and R. W. Kalpravidh (2016) Camellia oil-enriched diet attenuates oxidative stress and inflammatory markers in hypercholesterolemic Subjects. Journal of Medicinal Food 19: 895-898.
Cao, W., L. Lin, Y. Niu, Z. Xiao and X. Fang (2016) Characterization of aroma volatiles in camellia seed oils (Camellia oleifera Abel.) by HS-SPME/GC/MS and electronic nose combined with multivariate analysis. Food Science and Technology Research 22: 497-505.
Cebi, N., M. T. Yilmaz, O. Sagdic, H. Yuce and E. Yelboga (2017) Prediction of peroxide value in omega-3 rich microalgae oil by ATR-FTIR spectroscopy combined with chemometrics. Food Chemistry 225: 188-196.
Chai, W. M., X. Liu, Y. H. Hu, H. L. Feng, Y. L. Jia, Y. J. Guo, H. T. Zhou and Q. X. Chen (2013) Antityrosinase and antimicrobial activities of furfuryl alcohol, furfural and furoic acid. International Journal of Biological Macromolecules 57: 151-155.
Chaikul, P., T. Sripisut, S. Chanpirom, K. Sathirachawan and N. Ditthawuthikul (2017) Melanogenesis inhibitory and antioxidant effects of Camellia oleifera seed oil. Advanced Pharmaceutical Bulletin 7: 473-477.
Chang, S. K., C. Alasalvar, B. W. Bolling and F. Shahidi (2016) Nuts and their co-products: The impact of processing (roasting) on phenolics, bioavailability, and health benefits – A comprehensive review. Journal of functional Foods 26: 88-122.
Cheng Y. T., S. L. Wu, S. M. Huang, C. L. Cheng and G. C. Yen (2014) Beneficial effects of Camellia Oil (Camellia oleifera Abel.) on ketoprofen-induced gastrointestinal mucosal damage through upregulation of HO‑1 and VEGF. Journal of Agricultural and Food Chemistry 62: 642-650.
Davídek, T., S. Devaud, F. Robert and I. Blank (2006) Sugar fragmentation in the Maillard reaction cascade: isotope labeling studies on the formation of acetic acid by a hydrolytic β-dicarbonyl cleavage mechanism. Journal of Agricultural and Food Chemistry 54: 6667-6676.
Dostal, V., C. M. Roberts and C. D. Link (2010) Genetic mechanisms of coffee extract protection in a Caenorhabditis elegans model of β-amyloid peptide toxicity. Genetics 186: 857-866.
Farhoosh, R., R. Niazmand, M. Rezaei and M. Sarabi (2008) Kinetic parameter determination of vegetable oil oxidation under Rancimat test conditions. European Journal of Lipid Science and Technology 110: 587-592.
Frankel, E. N. (1988) Hydroperoxidation of unsaturated fatty esters. Oxygen Radicals in Biology and Medicine 49: 265-282.
Gao, P., Y. Cao, R. Liu, Q. Jin and X. Wang (2019) Phytochemical content, minorconstituent compositions, and antioxidant capacity of screw-pressed walnut oil obtained from roasted kernels. European Journal of Lipid Science and Technology 121: 1800292.
Guisbert, E., D Czyz, K. Richter, P. McMullen and R. Morimoto (2013) Identification of a tissue-selective heat shock response regulatory network. Public Library of Science 9: e1003466.
Hoed, V. V. (2010) Phenolic compounds in seed oils. Lipid Technology 22: 247-249.
Huang, Z. Q. (Eds) (1996) Flora of Taiwan, 2nd edition. Taipei Taiwan, Editorial Committee of the Flora of Taiwan pp. 861.
Huang, Z. R., Y. K. Lin and J. Y. Fang (2009) Biological and pharmacological activities of squalene and related compounds: potential uses in cosmetic dermatology. Molecules 14: 540-554.
Ji, J.,Y. Liu, L. Shi, N. Wang and X. Wang (2019) Effect of roasting treatment on the chemical composition of sesame oil. Food Science and Technology 101: 191-200.
Kao, J. W., E. G. Hammond and P. J. White (1998) Volatile compounds produced during deodorization of soybean oil and their flavor significance. Journal of the American Oil Chemists' Society 75: 1103-1107.
Kráčmar, S., M. Fišera, V. Přikrylová, L. Fišerová, Z. Málek and P. Tvrzník (2019) Storage of extra virgin olive oil and its impact on fatty acid levels. Journal of Microbiology, Biotechnology and Food Sciences 8: 1228-1230.
Krist, S. G. Stuebiger, S. Bail and H. Unterweger (2006) Analysis of volatile compounds and triacylglycerol composition of fatty seed oil gained from flax and false flax. European Journal of Lipid Science and Technology 108: 48-60.
Kujala, T. S., J. M. Loponen, K. D. Klika and K. Pihlaja (2000) Phenolics and betacyanins in red beetroot (Beta vulgaris) root: distribution and effect of cold storage on the content of total phenolics and three individual compounds. Journal of Agricultural and Food Chemistry 48: 5338-5342.
Kurt, C. (2018) Variation in oil content and fatty acid composition of sesame accessions from different origins. International Journal of Fats and Oils 69: e241.
Kwon, T. Y., J. S. Park and M. Y. Jung (2013) Headspace−solid phase microextraction−gas chromatography−tandem mass spectrometry (HS-SPME-GC- MS2) method for the determination of pyrazines in perilla seed oils: impact of roasting on the pyrazines in perilla seed oils. Journal of Agricultural and Food Chemistry 61: 8514-8523.
Lee, K. G. and T. Shibamoto (2002) Toxicology and antioxidant activities of non-enzymatic browning reaction products: review. Food Reviews International 18: 151-175.
Lee, C. P. and G. C. Yen (2006) Antioxidant activity and bioactive compounds of tea seed (Camellia oleifera Abel.) oil. Journal of Agricultural and Food Chemistry 54: 779-784.
Lee, C. P., P. H. Shih and G. C. Yen (2007) Hepatoprotection of tea seed oil (Camellia oleifera Abel.) against CCl4-induced oxidative damage in rats. Food and Chemical Toxicology 45: 888-895.
Li, H., G. Y. Zhou, H. Y. Zhang and J. A. Liu (2011) Research progress on the health function of tea oil. Journal of Medicinal Plants Research 5: 485-489.
Li, H., Z. Zhang, D. He, Y. Xia, Q. Liu and X. Li (2017) Ultrasound-assisted aqueous enzymatic extraction of oil from perilla seeds and determination of its physicochemical properties, fatty acid composition and antioxidant activity. Food Science and Technology 37: 71-77.
Link, C., A. Taft, V. Kapulkin, K. Duke, S. Kim, Q. Fei, D. Wood and B. Sahagan (2003) Gene expression analysis in a transgenic Caenorhabditis elegans Alzheimer’s disease model. Neurobiology of Aging 24: 397-413.
Liu, K., Q. Chen, Y. Liu, X. Zhou and X. Wang (2012) Isolation and biological activities of decanal, linalool, valencene, and octanal from sweet orange oil. Journal of Food Science 77: 1156-1161.
Lithgow, G. J., T. M. White, S. Melov and T. E. Jhonson (1995) Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proceedings of the National Academy of Sciences of the United States of America 92: 7540-7544.
Ma, J., H. Ye, Y. Rui, G. Chen and N. Zhang (2011) Fatty acid composition of Camellia oleifera oil. Journal of Consumer Protection and Food Safety 6: 9-12.
Matthäus, B., P. Li, F. Ma, H. Zhou, J. Jiang and M. M. Özcan (2018) Is the profile of fatty acids, tocopherols, and amino acids suitable to differentiate Pinus armandii suspicious to be responsible for the pine nut syndrome from other Pinus species? Chemistry Biodiversity 15: e1700323.
Moayedi, A., K. Rezaei, S. Moini and B. Keshavarz (2011) Chemical compositions of oils from several wild almond species. Journal of the American Oil Chemists' Society 88: 503-508.
Neđeral, S., D. Škevin, K. Kraljić, M. Obranović, S. Papeša and A. Bataljaku (2012) Chemical composition and oxidative stability of roasted and cold pressed pumpkin seed oils. Journal of the American Oil Chemists' Society 89: 1763-1770.
Park, M. H., M. K. Jeong, J. D. Yeo, H. J. Son, C. L. Lim, E. J. Hong, B. S. Noh and J. H. Lee (2011) Application of solid phase-microextraction (SPME) and electronic nose techniques to differentiate volatiles of sesame oils prepared with diverse roasting conditions. Journal of Food Science 76: 80-88.
Parker, T. D., D. A. Adams, K. Zhou, M. Harris and L. YU (2003) Fatty acid composition and oxidative stability of cold-pressed edible seed oils. Journal of Food Science 68: 1240-1243.
Pelvan, E., C. Alasalvar and S. Uzman (2012) Effects of roasting on the antioxidant status and phenolic profiles of commercial turkish hazelnut varieties (Corylus avellana L.). Journal of Agricultural and Food Chemistry 60: 1218-1223.
Prescha, A., M. Grajzer, M. Dedyk and H. Grajeta (2014) The antioxidant activity and oxidative stability of cold-pressed oils. Journal of the American Oil Chemists' Society 91: 1291-1301.
Rustan, A. C. and C. A. Drevon (2005) Fatty acids: structures and properties. Encyclopedia of Life Sciences, John Wiley and Sons, Ltd.
Selkoe, D. J. (2000) Toward a comprehensive theory for Alzheimer's disease. Hypothesis: Alzheimer's disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein. Annals of the New York Academy of Sciences 924: 17-25.
Shahidi, F. and Y. Zhong (2010) Novel antioxidants in food quality preservation and health promotion. European Journal of Lipid Science and Technology 112: 930-940.
Shrestha, K. and B. D. Meulenaer (2014) Effect of seed roasting on canolol, tocopherol, and phospholipid contents, Maillard type reactions, and oxidative sability of mustard and rapeseed oils. Journal of Agricultural and Food Chemistry 62: 5412-5419.
Siegmund, B. and M. Murkovic (2004) Changes in chemical composition of pumpkin seeds during the roasting process for production of pumpkin seed oil (part 2: volatile compounds). Food Chemistry 84: 367-374.
Smolentseva, O., I. Gusarov, L. Gautier, I. Shamovsky, A. DeFrancesco, R. Losick and E. Nudler (2017) Mechanism of biofilm-mediated stress resistance and lifespan extension in C. elegans. Scientific Reports 7: 7137.
Soto, C., E. Conde, A. Moure, M. E. Zúñiga and H. Domínguez (2008) Supercritical extraction of borage seed oil coupled to conventional solvent extraction of antioxidants. European Journal of Lipid Science and Technology 110: 1035-1044.
Su, M. H., M. C. Shih and K. H. Lin (2014) Chemical composition of seed oils in native Taiwanese Camellia species. Food Chemistry 156: 369-373.
Taş, N. G. and V. Gökmen (2017) Maillard reaction and caramelization during hazelnut roasting: A multiresponse kinetic study. Food Chemistry 221: 1911-1922.
Troise, A. D. (2018) Analytical strategies to depict the fate of the Maillard reaction in foods. Food Science 19: 15-22.
Wang, X., Q. Zeng, M. M. Contreras and L. Wang (2017) Profiling and quantification of phenolic compounds in Camellia seed oils: Natural tea polyphenols in vegetable oil. Food Research International 102: 184-194.
Wei, C. C., P. L. Yen, S. T. Chang, P. L. Cheng, Y. C. Lo and V. H. C. Liao (2016) Antioxidative activities of both oleic acid and Camellia tenuifolia seed oil are regulated by the Transcription Factor DAF-16/FOXO in Caenorhabditis elegans. Public Library of Science One 11: e0157195.
Xiao, H., Z. Yao, Q. Peng, F. Ni, Y. Sun, C. X. Zhang and Z. X. Zhong (2016) Extraction of squalene from camellia oil by silver ion complexation. Separation and Purification Technology 169: 196-201.
Xie, C., Z. F. Ma, F. Li, H. Zhang, L. Kong, Z. Yang and W. Xie (2018) Storage quality of walnut oil containing lycopene during accelerated oxidation. Journal of Food Science and Technology 55: 1387-1395.
Yang, K. M., F. L. Hsu, C. W. Chen, C. L. Hsu and M. C. Cheng (2018) Quality characterization and oxidative stability of camellia seed oils produced with different roasting temperatures. Journal of Oleo Science 67: 389-396.
Yu, A. N., B. G. Sun, D. T. Tian and W. Y. Qu (2008) Analysis of volatile compounds in traditional smoke-cured bacon (CSCB) with different fiber coatings using SPME. Food Chemistry 110: 233-238.
Yuan, J., C. Wang, H. Chen, H. Zhou and J. Ye (2013) Prediction of fatty acid composition in Camellia oleifera oil by near infrared transmittance spectroscopy (NITS). Food Chemistry 138: 1657-1662.
Zavala-Sánchez, M. A., S. Pérez-Gutiérrez, C. Pérez-González, D. Sánchez-Saldivar and L. Arias-García (2002) Antidiarrhoeal activity of nonanal, an aldehyde isolated from Artemisia ludoviciana. Pharmaceutical Biology 40: 263-268.
Zhang, W., R. Wang, Y. Yuan, T. Yang and S. Liu (2016) Changes in volatiles of palm kernel oil before and after kernel roasting. Food Science and Technology 73: 432-441.
Zhou, B. Y. Sun, J. Li, Q. Long and H. Zhong (2018) Effects of seed coat on oxidative stability and antioxidant activity of apricot (Prunus armeniaca L.) kernel oil at different roasting temperatures. Journal of the American Oil Chemists' Society 95: 1297-1306.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7164-
dc.description.abstract眾多植物油中,苦茶油富含不飽和脂肪酸,並具有預防腫瘤、保護肝臟和心臟、減緩心血管疾病及調節免疫系統等功效,是熱門的健康食用油之一。生產苦茶油的前處理過程繁複,包括果實採收、乾燥、脫除果殼與種殼、炒焙或水蒸等,其中炒焙或水蒸等前處理可提高種子的出油量,然而,種子經過不同溫度炒焙後會影響所製苦茶油之性質。本研究探討大果油茶(Camellia oleifera Abel.)種子經80、100及120℃炒焙後對壓榨之苦茶油性質及生物活性之影響,包括顏色、脂肪酸組成、Squalene及α-Tocopherol含量、總酚類化合物含量、酸價、過氧化價、油脂穩定指數、揮發性成分及線蟲(Caenorhabditis elegans)抗熱休克與抗麻痺性。結果顯示,種子炒焙溫度從80℃升至120℃,苦茶油顏色由黃色轉變為黃棕色,脂肪酸組成並無明顯變化,Squalene、α-Tocopherol含量及總酚類化合物含量皆增加,酸價無明顯改變,過氧化價下降,油脂穩定指數上升,且脂肪酸組成、酸價及過氧化價皆符合CNS對壓榨苦茶油的規範。另外,隨著種子炒焙溫度由80℃提高至100及120℃,苦茶油的主要揮發性成分由醛類化合物變為具有烘焙風味的呋喃衍生物及吡嗪衍生物,明顯的改變苦茶油的揮發性成分及其風味。生物活性試驗中,餵食苦茶油之線蟲比未食用者有較好的抗熱休克及抗麻痺性,然而,經餵食炒焙溫度80、100及120℃之相同濃度苦茶油的線蟲抗熱休克及抗麻痺性並無顯著差異。由本研究結果得知,將油茶種子的炒焙溫度由80℃提高至120℃,不影響苦茶油的脂肪酸組成及酸價,且可以降低其過氧化價、提高Squalene、α-Tocopherol及總酚類化合物含量與氧化穩定性,亦有開發為提高熱耐受性或預防阿茲海默症等健康食品的潛力。zh_TW
dc.description.abstractAmong many vegetable oils, camellia seed oil is rich in unsaturated fatty acids, and has the effects of preventing tumors, protecting the liver and heart, slowing down cardiovascular diseases and regulating the immune system. It is one of the popular healthy edible oils. The pretreatment process for producing camellia seed oil is complicated, including fruit harvesting, drying, removal of shells, roasting or steaming, etc., wherein pretreatment such as roasting or steaming can increase the oil yield. However, the seed roasting at different temperatures will affect the properties of camellia seed oil. This study was to investigate the effects of roasting seeds of Camellia oleifera at 80, 100 and 120 °C on the properties and biological activities of camellia seed oil, including color, fatty acid composition, squalene and α-tocopherol content, total phenolic content, acid value, peroxide value, oil stability index, volatile organic compound and Caenorhabditis elegans resistance to heat shock and anti-paralysis. The results showed that the seed roasting temperature increased from 80 °C to 120 °C, the color of camellia seed oil changed from yellow to yellowish brown, the fatty acid composition did not change significantly, the content of squalene, α-tocopherol and total phenolic content increased, the acid value did not change significantly, the peroxide value decreased, the oil stability index increased. Besides, the fatty acid composition, acid value and peroxide value were all in line with specifications of CNS for pressing camellia seed oil. In addition, as the seed roasting temperature is increased from 80 °C to 100 and 120 °C, the main volatile organic compounds of camellia seed oil changed from aldehyde to furan derivative and pyrazine derivative with roasting flavor, indicating that the roasting temperature will obviously change the volatile organic compounds and flavor of camellia seed oil. In the bioactivity test, the C. elegans that consumed camellia seed oil had better heat shock resistance and paralysis resistance than those who did not. However, there was no significant difference in heat shock resistance and paralysis resistance of C. elegans consumed the roasting temperatures of 80, 100 and 120 ℃ but the same concentration of camellia seed oil. In summary, the roasting temperature of Camellia oleifera seeds is increased from 80 °C to 120 °C, which does not affect the fatty acid composition and acid value of camellia seed oil, and can lower its peroxide value, increase squalene, α-tocopherol, total phenolic content and oxidative stability, and have the potential to develop into healthy food for improving heat tolerance or preventing Alzheimer's disease.en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:39:56Z (GMT). No. of bitstreams: 1
ntu-108-R06625014-1.pdf: 1842314 bytes, checksum: 8c4bfc88404c18b83e179ffd00c021e0 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents壹、前言 1
貳、文獻回顧 3
一、苦茶油簡介 3
(一)苦茶油的製程 4
(二)苦茶油的組成成分 6
(三)苦茶油的生物活性 10
1.抗氧化活性 10
2.保肝護胃作用 11
3.降血脂作用 12
4.抑制黑色素形成 12
(四)苦茶油的品質 13
二、炒焙對植物種子油性質之影響 15
(一)炒焙對南瓜籽油的影響 15
(二)炒焙對芝麻油的影響 17
(三)炒焙對核桃油的影響 19
三、種子炒焙產生之化學反應 21
參、材料與方法 22
一、材料 22
二、藥品與溶劑 22
三、方法 23
(一)顏色參數 23
(二)脂肪酸組成 23
(三)Squalene及α-Tocopherol含量 24
(四)總酚類化合物含量 25
(五)酸價及過氧化價 25
(六)油脂穩定指數 26
(七)揮發性成分 26
(八)線蟲生物活性 27
1. 大腸桿菌(Escherichia coli OP50)培養 27
2. NGM agar plate製備 28
3. 野生種及基因轉殖秀麗隱桿線蟲培養 28
4. 線蟲熱休克(Heat shock)試驗 28
5. 線蟲麻痺(Paralysis)試驗 29
(九)統計方法 29
肆、結果與討論 30
一、炒焙溫度對大果苦茶油理化性質之影響 30
(一)顏色參數 30
(二)脂肪酸組成 31
(三)Squalene及α-Tocopherol含量 34
(四)總酚類化合物含量 36
(五)酸價及過氧化價 37
(六)油脂穩定指數 39
(七)炒焙溫度與大果苦茶油理化性質之Pearson相關 40
二、大果苦茶油揮發性有機化合物成分之探討 41
三、大果苦茶油對線蟲之生物活性評估 57
(一)大果苦茶油對N2線蟲熱休克存活率之影響 57
(二)大果苦茶油對GCM101線蟲麻痺率之影響 59
伍、結論 61
陸、參考文獻 62
dc.language.isozh-TW
dc.title炒焙溫度對大果苦茶油性質及揮發性成分之影響zh_TW
dc.titleInfluences of Roasting Temperature on Properties and Volatile Organic Compounds of Camellia oleifera Seed Oilen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor許富蘭
dc.contributor.oralexamcommittee張上鎮,葉汀峰,張美鈴
dc.subject.keyword酸價,大果苦茶油,脂肪酸,油脂穩定指數,過氧化價,炒焙溫度,揮發性成分,zh_TW
dc.subject.keywordAcid value,Camellia oleifera seed oil,Fatty acid,Oil stability index,Peroxide value,Roasting temperature,Volatile organic compound,en
dc.relation.page70
dc.identifier.doi10.6342/NTU201903297
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-08-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf1.8 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved