Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71649
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳文山(Wen-Shan Chen)
dc.contributor.authorShao-I Kaoen
dc.contributor.author杲紹伊zh_TW
dc.date.accessioned2021-06-17T06:05:32Z-
dc.date.available2020-11-12
dc.date.copyright2020-11-12
dc.date.issued2020
dc.date.submitted2020-10-30
dc.identifier.citation王信雄 (2011) 雪山山脈北段剝露歷史及其構造意義。國立中正大學應用地球物理所碩士論文,共75頁。
何春蓀 (1986) 台灣地質概論。經濟部中央地質調查所,共164頁。
吳承穎 (2009) 台灣大濁水片麻岩磷灰石核飛跡年代與其地質意義。國立臺灣大學地質科學研究所碩士論文,共70頁。
宋國城 (1987) 恆春半島晚新第三紀地層及其古沈積環境之硏究。國立臺灣大學地質科學研究所碩士論文,共190頁。
宋國城 (1990) 恆春半島的地層問題;經濟部中央地質調查所特刊,第四號,第225-236頁。
宋國城 (1991) 恆春半島圖幅與說明書,五萬分之一台灣地質圖第69、70及72號。經濟部中央地質調查所,共77頁。
周南、劉聰桂,1997,核飛跡 (FT) 定年法。地質,第16卷,第1-2期,第97-111頁。
沈姿岑 (2007) 林口台地鋯石核飛跡定年。國立台灣大學地質科學研究所碩士論文,共66頁。
紀文榮 (1982) 臺灣利吉層與墾丁層內之超微化石及其在地質構造上之意義。地質,第4卷,第1期,第99-114頁。
徐士捷 (2017) 晚中新世以來沉積岩岩象分析探討臺灣南部山脈剝蝕歷史。國立臺灣大學地質科學研究所碩士論文,共139頁。
曹恕中 (1996) 臺灣中央山脈變質沉積岩伊萊石結晶度,鋯石核飛跡年代和鉀氬年代之地質意義。國立臺灣大學地質科學研究所博士論文,共265頁。
陳文山、鄭穎敏、黃奇瑜 (1985) 臺灣南部恆春半島之地質。地質,第6卷,第2期,第47-74頁。
陳文山、黃奇瑜、鄭穎敏 (1986) 台灣恆春半島中新世地層之生痕化石。地質,第7卷,第1期,第31-48頁。
陳文山、李偉彰 (1990) 西恆春台地地層之檢討。地質,10期,第2卷,第127-140頁
陳文山 (1992) 恆春半島墾丁層層位及時代的檢討,經濟部中央地質調查所特刊,第六號,第135-142頁。
陳文山、李偉彰、黃能偉、顏一勤、楊志成、楊小青、陳勇全、宋時驊 (2005) 恆春半島增積岩體的構造與地層特性。全新世恆春斷層的活動性。西太平洋地質科學,第5卷,第129-154頁。
陳文山、周賢元、邵文佑、謝凱旋、鍾孫霖 (2011) 墾丁傾瀉層中蛇綠岩質砂礫岩塊的碎屑鋯石鈾鉛年代­歐亞大陸與菲律賓海板塊碰撞的地質意義。中國地質學會年會,論文摘要。
陳文山、俞何興、俞震甫、鍾孫霖、林正洪、林啟文、游能悌、吳逸民、王國龍 (2016) 台灣地質概論。社團法人中華民國地質學會出版,共204頁。
陳文山、吳逸民、葉柏逸、賴奕修、柯明淳、柯孝勳、林義凱 (2019) 台灣東南海域隱沒至碰撞轉換帶的孕震構造。經濟部中央地質調查所特刊,第三十四號,第125-140頁。
陳盈璇 (2005) 台灣南部恆春半島墾丁混同岩體的構造演化紀錄:微體古生物證據。國立成功大學地球科學研究所碩士論文,共84頁。
陳肇夏與王京新 (1995) 台灣變質相圖說明,第二版。經濟部中央地質調查所特刊,第二號,共51頁。
黃奇瑜、鄭穎敏、葉家正 (1985) 論恆春半島上墾丁層之成因。地質,第6卷,第1期,第21-38頁。
黃于倫 (2019) 利用碎屑鋯石鈾鉛定年分析墾丁與利吉混同層砂岩岩塊之源區。國立臺灣大學地質科學研究所碩士論文,共138頁。
張敏 (1985) 台灣南部恆春半島新第三系之生物地層。國立臺灣大學地質研究所碩士論文,共65頁。
詹新甫 (1974) 恆春半島之地層與構造並申論中新世傾瀉層。台灣省地質調查所彙刊,第二十六號,第99-108頁。
賴斾綺 (2011) 台灣北部麓山帶的磷灰石核飛跡定年分析及其大地構造隱示。國立臺灣大學地質科學研究所碩士論文,共116頁。
劉聰桂 (1982) 台灣磷灰石、鋯石、榍石之核飛跡研究與其在大地構造上之意義。國立台灣大學地質學研究所博士論文,共95頁。
謝雪莉 (1990) 台灣島數條東西向剖面之核飛跡定年研究。國立台灣大學地質學研究所碩士論文,共134頁。
Angelier J. (1990). Foreword, Special Issue 'Geodynamic Evolution of the Eastern Eurasian Margin', Tectonophysics 183, VII-X.
Brandon, M. T. (1992). Decomposition of fission-track grain-age distributions. American Journal of Science, 292(8), 535-564.
Brandon, M. T. (2002). Decomposition of mixed grain age distributions using binomfit. On track, 24(8), 13-18.
Brandon, M. T. (2005). BinomFit: A windows program for estimating fission‐track ages for concordant and mixed gran age distribution, 14p.
Burtner, R. L., Nigrini, A., Donelick, R. A. (1994). Thermochronology of lower cretaceous source rocks in the idaho-wyoming thrust belt. AAPG bulletin, 78(10), 1613-1636.
Chang, C.-P., Angelier, J., Huang, C.-Y. (2009). Evolution of subductions indicated by mélanges in taiwan. In Subduction zone geodynamics: Springer (2009), 207-225
Chen, C.-H. (1998). Metamorphic rock of taiwan. Central Geological Survey, Taiwan, 365.
Chen, W.-S., Yeh, J.-J., Syu, S.-J. (2019). Late cenozoic exhumation and erosion of the taiwan orogenic belt: New insights from petrographic analysis of foreland basin sediments and thermochronological dating on the metamorphic orogenic wedge. Tectonophysics, 750, 56-69.
Chen, W. S., Chung, S. L., Chou, H. Y., Zugeerbai, Z., Shao, W. Y., Lee, Y. H. (2017). A reinterpretation of the metamorphic yuli belt: Evidence for a middle‐late miocene accretionary prism in eastern taiwan. Tectonics, 36(2), 188-206.
Cheng, Y., Huang, C. (1975). Biostratigraphic study in the west hengchun hill. Acta Geologica Taiwanica, 18, 49-59.
Chi, W. (1982). The calcareous nannofossils of the lichi mélange and the kenting mélange and their significance in the interpretation of plate tectonics of the taiwan region. Ti-Chih (Geology), 4(1), 99-112.
Chi, W.-C. (1995). Distribution of the bottom-simulating reflector in the offshore Taiwan collision zone: Implications for fluid migration, 46p.
Chi, W.-C., Reed, D. L. (2008). Evolution of shallow, crustal thermal structure from subduction to collision: An example from taiwan. Geological Society of America Bulletin, 120(5-6), 679-690.
Dodson, M. H. (1973). Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology, 40(3), 259-274.
Donelick, R. A. (1991). Crystallographic orientation dependence of mean etchable fission track length in apatite: An empirical model and experimental observations. American Mineralogist, 76(1-2), 83-91.
Donelick, R. A., O’Sullivan, P. B., Ketcham, R. A. (2005). Apatite fission-track analysis. Reviews in Mineralogy and Geochemistry, 58(1), 49-94.
Dunkl, I. (2002). Trackkey: A windows program for calculation and graphical presentation of fission track data. Computers Geosciences, 28(1), 3-12.
Ehlers, T. A., Chaudhri, T., Kumar, S., Fuller, C. W., Willett, S. D., Ketcham, R. A., . . . Gleadow, A. J. (2005). Computational tools for low-temperature thermochronometer interpretation. Reviews in Mineralogy and Geochemistry, 58(1), 589-622.
Fleischer, R., Naeser, C., Price, P., Walker, R., Maurette, M. (1965a). Cosmic ray exposure ages of tektites by the fission‐track technique. Journal of Geophysical Research, 70(6), 1491-1496.
Fleischer, R., Price, P., Symes, E., Miller, D. (1964a). Fission-track ages and track-annealing behavior of some micas. Science, 143(3604), 349-351.
Fleischer, R., Price, P., Walker, R. (1964b). Fission‐track ages of zircons. Journal of Geophysical Research, 69(22), 4885-4888.
Fleischer, R., Price, P., Walker, R. (1965b). Effects of temperature, pressure, and ionization of the formation and stability of fission tracks in minerals and glasses. Journal of Geophysical Research, 70(6), 1497-1502.
Fleischer, R. L., Price, P. B., Walker, R. M., Walker, R. M. (1975). Nuclear tracks in solids: Principles and applications: Univ of California Press, Berkeley, 605p.
Fuller, C., Willett, S., Fisher, D., Lu, C. (2006). A thermomechanical wedge model of taiwan constrained by fission-track thermochronometry. Tectonophysics, 425(1-4), 1-24.
Galbraith, R., Green, P. (1990). Estimating the component ages in a finite mixture. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 17(3), 197-206.
Galbraith, R. F. (2005). Statistics for fission track analysis: CRC Press, 219p.
Galbraith, R. F., Laslett, G. M. (1993). Statistical models for mixed fission track ages. Nuclear tracks and radiation measurements, 21(4), 459-470.
Gallagher, K., Brown, R., Johnson, C. (1998). Fission track analysis and its applications to geological problems. Annual Review of Earth and Planetary Sciences, 26(1), 519-572.
Ghent, E.D., Stout, M.Z., and Parrish, R.R. (1988) Determination of metamorphic pressure-temperature-time (P-T-t) paths, in E.G. Nisbet and C.M.R. Fowler, eds., Heat, metamorphism and tectonics. Mineralogical Association of Canada Short Course, 14, 155-188.
Gleadow, A., Brooks, C. (1979). Fission track dating, thermal histories and tectonics of igneous intrusions in east greenland. Contributions to Mineralogy and Petrology, 71(1), 45-60.
Gleadow, A., Duddy, I. (1981). A natural long-term track annealing experiment for apatite. Nuclear tracks, 5(1-2), 169-174.
Gleadow, A., Lovering, J. (1978). Thermal history of granitic rocks from western victoria: A fission‐track dating study. Journal of the Geological Society of Australia, 25(5-6), 323-340.
Gleadow, A. J., Belton, D. X., Kohn, B. P., Brown, R. W. (2002). Fission track dating of phosphate minerals and the thermochronology of apatite. Reviews in mineralogy and geochemistry, 48(1), 579-630.
Gleadow, A. J., Brown, R. W. (2000). Fission-track thermochronology and the long-term denudational response to tectonics. Geomorphology and global tectonics, 57-75.
Green, P., Duddy, I., Gleadow, A., Tingate, P., Laslett, G. (1985). Fission-track annealing in apatite: Track length measurements and the form of the arrhenius plot. Nuclear Tracks and Radiation Measurements (1982), 10(3), 323-328.
Green, P., Duddy, I., Gleadow, A., Tingate, P., Laslett, G. (1986). Thermal annealing of fission tracks in apatite: 1. A qualitative description. Chemical Geology: Isotope Geoscience Section, 59, 237-253.
Haack, U. (1976). Experiences with dating garnet, epidote, vesuvianite (idiocrase) and apatite by fission tracks, 143-155.
Haack, U. (1977). The closing temperature for fission track retention in minerals. American Journal of Science, 277(4), 459-464.
Huang, C., Chien, C., Yao, B., Chang, C. (2008). The lichi mélange: A collision mélange formation along early arcward backthrusts during forearc basin closure, taiwan arc-continent collision. Special papers-geological society of America, 436 (2008), 127-154.
Huang, C.-Y., Wu, W.-Y., Chang, C.-P., Tsao, S., Yuan, P. B., Lin, C.-W., Xia, K.-Y. (1997). Tectonic evolution of accretionary prism in the arc-continent collision terrane of taiwan. Tectonophysics, 281(1-2), 31-51.
Huang, C.-Y., Yuan, P. B., Tsao, S.-J. (2006). Temporal and spatial records of active arc-continent collision in taiwan: A synthesis. Geological Society of America Bulletin, 118(3-4), 274-288.
Huang, T. C., Ting, J. S., Muller, C. (1983). A note on Pliocene microfossils from the Kenting mélange. Proceedings of the Geological Society of China, 26, 57-66.
Hurford, A. J., Green, P. F. (1982). A users' guide to fission track dating calibration. Earth and Planetary Science Letters, 59(2), 343-354.
Hurford, A. J., Green, P. F. (1983). The zeta age calibration of fission-track dating. Chemical Geology, 41, 285-317.
Kirstein, L. A., Carter, A., Chen, Y. G. (2010). Testing inferences from palaeocurrents: Application of zircon double‐dating to miocene sediments from the hengchun peninsula, taiwan. Terra Nova, 22(6), 483-493.
Kirstein, L. A., Fellin, M. G., Willett, S. D., Carter, A., Chen, Y. G., Garver, J. I., Lee, D.-C. (2010). Pliocene onset of rapid exhumation in taiwan during arc–continent collision: New insights from detrital thermochronometry. Basin Research, 22(3), 270-285.
LAL, N., Nishimura, S., SORKHABI, R. B. (1988). Fission track geothermochronometry: A review. Journal of the Geothermal Research Society of Japan, 10(1), 1-27.
Lee, Y.-H., Chen, C.-C., Liu, T.-K., Ho, H.-C., Lu, H.-Y., Lo, W. (2006). Mountain building mechanisms in the southern central range of the taiwan orogenic belt—from accretionary wedge deformation to arc–continental collision. Earth and Planetary Science Letters, 252(3-4), 413-422.
Lisker, F., Ventura, B., Glasmacher, U. (2009). Apatite thermochronology in modern geology. Geological Society, London, Special Publications, 324(1), 1-23.
Liu, T.-K. (1982). Tectonic implication of fission track ages from the central range, taiwan. Paper presented at the Proc. Geol. Soc. China, 25, 22-37.
Liu, T.-K., Chen, Y.-G., Chen, W.-S., Jiang, S.-H. (2000). Rates of cooling and denudation of the early penglai orogeny, taiwan, as assessed by fission-track constraints. Tectonophysics, 320(1), 69-82.
Liu, T.-K., Hsieh, S., Chen, Y.-G., Chen, W.-S. (2001). Thermo-kinematic evolution of the taiwan oblique-collision mountain belt as revealed by zircon fission track dating. Earth and Planetary Science Letters, 186(1), 45-56.
Lo, C.-H., Yui, T.-F. (1996). 40ar/39ar dating of high-pressure rocks in the tananao basement complex, taiwan. JOURNAL-GEOLOGICAL SOCIETY OF CHINA-TAIWAN-, 39, 13-30.
Lock. J.(2007). Interpreting Low-Temperature Thermochronometric Data in
Fold-and-Thrust Belts: An Example from the Western Foothills, Taiwan.
University of Washington, 219p.
Lu, C.-Y., Malavieille, J. (1994). Oblique convergence, indentation and rotation tectonics in the taiwan mountain belt: Insights from experimental modelling. Earth and Planetary Science Letters, 121(3-4), 477-494.
Malavieille, J., Lallemand, S. E., Dominguez, S., Deschamps, A., Lu, C.-Y., Liu, C.-S., . . . Crew, A. S. (2002). Arc-continent collision in taiwan: New marine observations and tectonic evolution. Special Papers-Geological Society of America, 187-211.
Malavieille, J., Molli, G., Genti, M., Dominguez, S., Beyssac, O., Taboada, A., . . . Chen, C.-T. (2016). Formation of ophiolite-bearing tectono-sedimentary mélanges in accretionary wedges by gravity driven submarine erosion: Insights from analogue models and case studies. Journal of Geodynamics, 100, 87-103.
Malavieille, J., Trullenque, G. (2009). Consequences of continental subduction on forearc basin and accretionary wedge deformation in se taiwan: Insights from analogue modeling. Tectonophysics, 466(3-4), 377-394.
Malusà, M. G., Fitzgerald, P. G. (2019). Fission-track thermochronology and its application to geology: Springer, 393p.
Malusà, M. G., Fitzgerald, P. G. (2020). The geologic interpretation of the detrital thermochronology record within a stratigraphic framework, with examples from the european alps, taiwan and the himalayas. Earth-Science Reviews, 201, 103074, 41p.
Naeser, C. (1967). The use of apatite and sphene for fission track age determinations. Geological Society of America Bulletin, 78(12), 1523-1526.
Naeser, C. (1979). Fission-track dating and geologic annealing of fission tracks. In Lectures in isotope geology: Springer, 154-169.
Naeser, C. t., Dodge, F. (1969). Fission-track ages of accessory minerals from granitic rocks of the central sierra nevada batholith, california. Geological Society of America Bulletin, 80(11), 2201-2212.
O'Sullivan, P. B., Parrish, R. R. (1995). The importance of apatite composition and single-grain ages when interpreting fission track data from plutonic rocks: A case study from the coast ranges, british columbia. Earth and Planetary Science Letters, 132(1-4), 213-224.
Page, B. M., Lan, C.-Y. (1983). The kenting mélange and its record of tectonic events. Mem. Geol. Soc. China, 5(227), 248p.
Pelletier, B., Stephan, J.-F., Blanchet, R., Muller, C., Hu, H. (1985). L'emergence d'une zone de collision active a la pointe sud de taiwan (peninsule d'hengchun); tectoniques superposees et mise en evidence d'une obduction miocene moyen. Bulletin de la Société géologique de France, 1(2), 161-171.
Pelletier, B., Stephan, J. F. (1986). Middle miocene deduction and late miocene beginning of collision registered in the hengchun peninsula: Geodynamic implications for the evolution of taiwan. Tectonophysics, 125(1-3), 133-160.
Price, P., Walker, R. (1963). Fossil tracks of charged particles in mica and the age of minerals. Journal of Geophysical Research, 68(16), 4847-4862.
Resentini, A., Malusà, M. G., Garzanti, E. (2020). Ongoing exhumation of the taiwan orogenic wedge revealed by detrital apatite thermochronology: The impact of effective mineral fertility and zero-track grains. Earth and Planetary Science Letters, 544, 116374, 13p.
Seno, T. (1977). The instantaneous rotation vector of the Philippine Sea plate relative to the Eurasian plate. Tectonophysics, 42(2-4), 209-226.
Shao, W., Chung, S., Chen, W. (2014). Zircon u-pb age determination of volcanic eruptions in lutao and lanyu in the northern luzon. Terr. Atmos. Ocean. Sci., Vol. 25, No. 2, 149-187.
Sneyd, A. (1984). A computer program for calculating exact confidence intervals for age in fission-track dating. Computers and Geosciences, 10(2-3), 339-345.
Steiger, R. H., Jäger, E. (1977). Subcommission on geochronology: Convention on the use of decay constants in geo-and cosmochronology. Earth and planetary science letters, 36(3), 359-362.
Stewart, R. J., Brandon, M. T. (2004). Detrital-zircon fission-track ages for the “hoh formation”: Implications for late cenozoic evolution of the cascadia subduction wedge. Geological Society of America Bulletin, 116(1-2), 60-75.
Sung, Q.-C., Wang, Y. (1985). Petrofacies of miocene sediments in the hengchun peninsula and its tectonic implication. Proceedings of the Geological Society of China, 28, 23-44.
Suppe, J. (1981). Mechanics of mountain building and metamorphism in taiwan. Mem. Geol. Soc. China, 4(6), 67-89.
Suppe, J. (1984). Kinematics of arc‐continent collision, flipping of subduction, and back‐arc spreading near Taiwan. Geol. Soc. China Mem. 6:21–34.
Suppe, J. (1988). Tectonics of arc-continent collision on both sides of the south china sea: Taiwan and mindoro. Yánjiū bàogào-Guólì Táiwān dàxué. Lǐxuéyuàn dìzhìxué xì (26), 1-18.
Tagami, T., O’Sullivan, P. B. (2005). Fundamentals of fission-track thermochronology. Reviews in Mineralogy and Geochemistry, 58(1), 19-47.
Teng, L. S. (1990). Geotectonic evolution of late cenozoic arc-continent collision in taiwan. Tectonophysics, 183(1-4), 57-76.
Teng, L. S. (1996). Extensional collapse of the northern taiwan mountain belt. Geology, 24(10), 949-952.
Van den Haute, P., De Corte, F. (1996). Advances in fission-track geochronology (Vol. 10): Springer Science Business Media, 330p.
Wagner, G. (1968). Fission track dating of apatites. Earth and Planetary Science Letters, 4(5), 411-415.
Wagner, G. (1981). Fission-track ages and their geological interpretation. Nuclear Tracks, 5(1-2), 15-25.
Wagner, G., Reimer, G. (1972). Fission track tectonics: The tectonic interpretation of fission track apatite ages. Earth and Planetary Science Letters, 14(2), 263-268.
Wagner, G., Van den haute, p. (1992). Fission-track dating. Solid earth sciences library, vol. 6. In: Kluwer Academic Publishers, Dordrecht, 285p.
Willett, S. D., Fisher, D., Fuller, C., En-Chao, Y., Chia-Yu, L. (2003). Erosion rates and orogenic-wedge kinematics in taiwan inferred from fission-track thermochronometry. Geology, 31(11), 945-948.
Yen, J.-Y., Lundberg, N. (2008). Implications of fission track analysis results from miocene sandstone units of hengchun peninsula. Symposium on Structural Geology of Taiwan, Program and Abstracts.
Zhang, X., Yan, Y., Huang, C.-Y., Chen, D., Shan, Y., Lan, Q., . . . Yu, M. (2014). Provenance analysis of the miocene accretionary prism of the hengchun peninsula, southern taiwan, and regional geological significance. Journal of Asian Earth Sciences, 85, 26-39.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71649-
dc.description.abstract本研究目的為討論恆春半島在造山時期地殼隆升過程的冷卻歷史。因此,針對晚中新世未變質的里龍山層進行磷灰石的核飛跡定年 (低溫熱定年),來了解台灣南部造山演化史。本研究的樣本採自里龍山層上部砂礫岩層,包含砂礫岩層中的變質砂岩礫石與基質的砂岩。里龍山層屬於超微化石NN11帶的晚中新世地層 (5.6-8.3 Ma),其沉積環境為淺海陸棚至斜坡的沖積扇,古水流方向由北向南,沉積物來源自北方的造山帶,推測由變質砂岩礫石的磷灰石核飛跡年代可用以討論源區造山帶的冷卻歷史。然而本研究結果顯示,封存溫度僅135±20˚C的磷灰石核飛跡已經在里龍山層被深埋的過程中被完全癒合,因此無法記錄源區的剝蝕歷史,不過深埋後癒合的核飛跡年代可解釋恆春半島的抬升剝蝕歷史。
本研究指出里龍山層的磷灰石核飛跡集合年代介於2.6±0.5至3.5±0.6 Ma,砂岩與變質砂岩單顆粒年代頻譜相似,並且核飛跡年代皆小於里龍山層的沉積年代 (NN11帶,>5.6 Ma),代表磷灰石核飛跡在里龍山層沉積後被完全癒合 (totally reset)。由於里龍山層在沉積以後未受變質,埋藏溫度可能接近於磷灰石核飛跡封存溫度 (~135°C),因此推測磷灰石核飛跡冷卻年代接近於初始抬升年代,故此定年結果可視為恆春半島的初始隆起年代為2.6±0.5至3.5±0.6 Ma。從研究結果可以得知里龍山層於晚中新世到上新世期間上覆地層持續增厚至2.1-3.8公里,初始抬升以來的冷卻速率為34-46°C/ Ma,平均剝蝕速率為0.6-1.5 mm/yr。
zh_TW
dc.description.abstractThis study aims to investigate the thermal history regarding the Late Miocene strata in the Hengchun Peninsula with low-temperature thermochronology. Those samples collected were from the Lilungshan Formation, including quartzite (pebbles) and sandstones (matrix). Apatite fission-track thermochronology is a radiometric dating method that refers to thermal histories of the sedimentary basin within the closure temperature range of 135±20˚C. Our study shows that fission-track ages of quartzite pebbles and the sandstones obtain pooled ages between 2.6±0.5 Ma and 3.5±0.6 Ma, and the age distributions indicate total reset. Nevertheless, the formation age of the Lilungshan Formation falls within nannofossil zone NN11 (5.6-8.3 Ma). If the fission-track age record is less than the depositional age, which represents a post-deposition annealing age, the strata should be buried deeply to over the closure temperature of apatite fission-track. Therefore, we confirm that the Lilungshan Formation has encountered a thermal event caused by tectonic burial in the foreland basin.
In conclusion, the apatite fission-track ages of the Lilungshan Formation have been totally reset due to paleo-burial. Besides, the onset of uplifting age in the Hengchun Peninsula was between 2.6±0.5 Ma and 3.5±0.6 Ma. Furthermore, if we assume the geothermal gradient is 45±13°C/km, the thickness of overlying strata must at least 2.1-3.8 km to reach the closure temperature of apatite fission-track (~135°C). It shows that the cooling rate of the basin is 34-46℃/Myr, and the exhumation rate of the basin is 0.6-1.5 mm/yr.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:05:32Z (GMT). No. of bitstreams: 1
U0001-3010202002090400.pdf: 11475339 bytes, checksum: c782291902aa4e6439e3246a8b817a14 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員審定書 i
致謝 ⅱ
摘要 iv
ABSTRACT v
目錄 vi
圖目錄 viii
表目錄 xi
式目錄 xii
第一章 前言 1
1-1 區域地質概述 1
1-2 前人研究 4
1-3 研究動機與目的 13
第二章 研究方法 14
2-1 核飛跡定年之原理 14
2-1-1 核飛跡的形成 14
2-1-2 核飛跡的消失 15
2-1-3 磷灰石核飛跡的特性 16
2-2 核飛跡年代的地質意義 20
2-3 核飛跡之年代公式 22
2-3-1 核飛跡年代的計算與校正 22
2-3-2 中子通量的計算 25
2-3-3 單顆粒年代的同質性檢定 25
2-3-4 年代誤差的計算 28
2-4 核飛跡定年實驗方法 31
2-4-1 樣本採集 31
2-4-2 外部檢測法與核飛跡計數方法 33
2-4-3 樣本前處理流程 37
2-5 鋯石鈾鉛定年之原理 40
第三章 研究結果 41
3-1 磷灰石核飛跡定年結果 41
3-2 磷灰石核飛跡顆粒年代頻譜 45
第四章 討論 53
4-1 里龍山層的埋藏溫度 53
4-2 由鋯石鈾鉛頻譜探討里龍山層沉積物來源 56
4-3 核飛跡年代與層序關係的意義 59
4-4 剝蝕速率 61
4-5 恆春半島的磷灰石核飛跡癒合程度 65
4-6 恆春半島抬升歷史 70
4-7 恆春半島初始碰撞時間探討 74
第五章 結論 78
參考文獻 79
附錄一 磷灰石核飛跡定年數據 91
附錄二 鋯石鈾鉛定年數據 125
dc.language.isozh-TW
dc.subject冷卻歷史zh_TW
dc.subject低溫熱定年zh_TW
dc.subject剝蝕速率zh_TW
dc.subject冷卻速率zh_TW
dc.subject初始抬升年代zh_TW
dc.subject沉積後癒合zh_TW
dc.subject恆春半島zh_TW
dc.subject磷灰石核飛跡定年zh_TW
dc.subject埋藏溫度zh_TW
dc.subject晚中新世zh_TW
dc.subject里龍山層zh_TW
dc.subjectHengchun Peninsulaen
dc.subjectapatiteen
dc.subjectupliftingen
dc.subjectthermal historyen
dc.subjectLate Mioceneen
dc.subjectLilungshan Formationen
dc.subjectsouthern Taiwanen
dc.subjectfission-tracken
dc.subjectlow-temperature thermochronologyen
dc.subjectexhumation rateen
dc.subjectcooling rateen
dc.title從晚中新世里龍山層磷灰石核飛跡定年研究探討恆春半島隆起的起始年代zh_TW
dc.titleApatite fission-track dating of the Late Miocene strata (Lilungshan Formation) in southern Taiwan: Implications for the onset of uplifting of the Hengchun Peninsulaen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee顏君毅(Jiun-Yee Yen),黃韶怡(Shao-Yi Huang),劉聰桂(Tsung-Kwei Liu)
dc.subject.keyword磷灰石核飛跡定年,恆春半島,初始抬升年代,晚中新世,里龍山層,冷卻歷史,低溫熱定年,剝蝕速率,冷卻速率,埋藏溫度,沉積後癒合,zh_TW
dc.subject.keywordfission-track,apatite,uplifting,thermal history,Late Miocene,Lilungshan Formation,southern Taiwan,Hengchun Peninsula,low-temperature thermochronology,exhumation rate,cooling rate,en
dc.relation.page145
dc.identifier.doi10.6342/NTU202004314
dc.rights.note有償授權
dc.date.accepted2020-10-30
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
U0001-3010202002090400.pdf
  未授權公開取用
11.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved