請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71640完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 童國倫 | |
| dc.contributor.author | Pei-Chuan Chen | en |
| dc.contributor.author | 陳珮鵑 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:05:17Z | - |
| dc.date.available | 2021-01-25 | |
| dc.date.copyright | 2019-01-25 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-01-19 | |
| dc.identifier.citation | REFERENCES
[1] R.-J. Huang, Y. Zhang, C. Bozzetti, K.-F. Ho, J.-J. Cao, Y. Han, K.R. Daellenbach, ___J.G. Slowik, S.M. Platt, F. Canonaco, High secondary aerosol contribution to ___particulate pollution during haze events in China, Nature, 514 (2014) 218. [2] R. Chen, Z. Zhao, H. Kan, Heavy smog and hospital visits in Beijing, China, American ___journal of respiratory and critical care medicine, 188 (2013) 1170-1171. [3] L.B. Lave, E.P. Seskin, An analysis of the association between US mortality and air ___pollution, Journal of the American Statistical Association, 68 (1973) 284-290. [4] Y. Xie, B. Zhao, L. Zhang, R. Luo, Spatiotemporal variations of PM2.5 and PM10 ___concentrations between 31 Chinese cities and their relationships with SO2, NO2, CO ___and O3, Particuology, 20 (2015) 141-149. [5] X. Yao, C.K. Chan, M. Fang, S. Cadle, T. Chan, P. Mulawa, K. He, B. Ye, The water-___soluble ionic composition of PM2.5 in Shanghai and Beijing, China, Atmospheric ___Environment, 36 (2002) 4223-4234. [6] D. Riva, C. Magalhaes, A.A. Lopes, T. Lancas, T. Mauad, O. Malm, S. Valenca, P. ___Saldiva, D. Faffe, W. Zin, Low dose of fine particulate matter (PM2.5) can induce acute ___oxidative stress, inflammation and pulmonary impairment in healthy mice, Inhalation ___toxicology, 23 (2011) 257-267. [7] C.S. Kim, S. Hu, Regional deposition of inhaled particles in human lungs: comparison ___between men and women, Journal of Applied Physiology, 84 (1998) 1834-1844. [8] C.A. Pope III, R.T. Burnett, M.J. Thun, E.E. Calle, D. Krewski, K. Ito, G.D. Thurston, ___Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate ___air pollution, Jama, 287 (2002) 1132-1141. [9] C.-s. Wang, Y. Otani, Removal of nanoparticles from gas streams by fibrous filters: a ___review, Industrial & Engineering Chemistry Research, 52 (2012) 5-17. [10] M. Li, Y. Feng, K. Wang, W.F. Yong, L. Yu, T.-S. Chung, Novel hollow fiber air ____filters for the removal of ultrafine particles in PM2.5 with repetitive usage capability, ____Environmental Science & Technology, 51 (2017) 10041-10049. [11] Z. Qi, E. Cussler, Microporous hollow fibers for gas absorption: II. Mass transfer ____across the membrane, Journal of Membrane Science, 23 (1985) 333-345. [12] N. Peng, N. Widjojo, P. Sukitpaneenit, M.M. Teoh, G.G. Lipscomb, T.-S. Chung, J.- ____Y. Lai, Evolution of polymeric hollow fibers as sustainable technologies: past, ____present, and future, Progress in Polymer Science, 37 (2012) 1401-1424. [13] R. Ma, C. Gooding, W.J.A.j. Alexander, A dynamic model for low‐pressure, hollow‐____fiber ultrafiltration, AIChE journal, 31 (1985) 1728-1732. [14] C. Serra, M.J. Clifton, P. Moulin, J.-C. Rouch, P.J.o.m.s. Aptel, Dead-end ____ultrafiltration in hollow fiber modules: Module design and process simulation, ____Journal of membrane science, 145 (1998) 159-172. [15] R. Ghidossi, J. Daurelle, D. Veyret, P.J.C.E.J. Moulin, Simplified CFD approach of ____a hollow fiber ultrafiltration system, Chemical Engineering Journal, 123 (2006) 117-____125. [16] B. Marcos, C. Moresoli, J. Skorepova, B.J.J.o.M.S. Vaughan, CFD modeling of a ____transient hollow fiber ultrafiltration system for protein concentration, Journal of ____Membrane Science, 337 (2009) 136-144. [17] M. Shi, G. Printsypar, O. Iliev, V.M. Calo, G.L. Amy, S.P. Nunes, Water flow ____prediction for membranes using 3D simulations with detailed morphology, Journal ____of Membrane Science, 487 (2015) 19-31. [18] B. Van der Bruggen, Membrane Technology, in: Kirk-Othmer Encyclopedia of ____Chemical Technology, 2017, pp. 1-47. [19] B.S. Lalia, V. Kochkodan, R. Hashaikeh, N. Hilal, A review on membrane fabrication: ____Structure, properties and performance relationship, Desalination, 326 (2013) 77-95. [20] R.W. Baker, U.b. Staff, Membrane technology, Kirk‐Othmer Encyclopedia of ____Chemical Technology, (2000). [21] P. Pattnaik, I. Louis, M. Mahadevan, Use of Membrane Technology in Bioprocessing ____Therapeutic Proteins from Inclusion Bodies of E. coli, Bioprocess Int, 7 (2009) 54-____62. [22] L. Luo, P. Wang, S. Zhang, G. Han, T.-S. Chung, Novel thin-film composite tri-bore ____hollow fiber membrane fabrication for forward osmosis, Journal of Membrane ____Science, 461 (2014) 28-38. [23] S. Loeb, S. Sourirajan, Sea water demineralization by means of an osmotic ____membrane, University of California, Department of Engineering, 1960. [24] H. Strathmann, K. Kock, The formation mechanism of phase inversion membranes, ____Desalination, 21 (1977) 241-255. [25] K. Li, Ceramic membranes for separation and reaction, John Wiley & Sons, 2007. [26] S. Husain, W.J. Koros, Macrovoids in hybrid organic/inorganic hollow fiber ____membranes, Industrial & Engineering Chemistry Research, 48 (2009) 2372-2379. [27] M.C.V. Vela, S.A. Blanco, J.L. García, E.B. Rodríguez, Analysis of membrane pore ____blocking models applied to the ultrafiltration of PEG, Separation Purification ____Technology, 62 (2008) 489-498. [28] H. Huang, T.A. Young, J.G. Jacangelo, Unified membrane fouling index for low ____pressure membrane filtration of natural waters: principles and methodology, ____Environmental Science Technology, 42 (2007) 714-720. [29] P. Hermans, Principles of the mathematical treatment of constant-pressure filtration, ____J. Soc. Chem. Ind., 55 (1936) 1. [30] J. Hermia, Constant pressure blocking filtration laws-application to power-law non-____Newtonian fluids, Chem. Eng. Res. Des., 60 (1982) 183-187. [31] F. Wang, V.V. Tarabara, Pore blocking mechanisms during early stages of membrane ____fouling by colloids, Journal of colloid interface science, 328 (2008) 464-469. [32] R.S. Raman, P.K. Hopke, T.M. Holsen, Characterization of fine aerosol and its ____inorganic components at two rural locations in New York State, Environmental ____monitoring and assessment, 144 (2008) 351-366. [33] B.-J. Lee, B. Kim, K. Lee, Air pollution exposure and cardiovascular disease, ____Toxicological research, 30 (2014) 71. [34] C.A. Pope III, R.T. Burnett, G.D. Thurston, M.J. Thun, E.E. Calle, D. Krewski, J.J. ____Godleski, Cardiovascular mortality and long-term exposure to particulate air ____pollution: epidemiological evidence of general pathophysiological pathways of ____disease, Circulation, 109 (2004) 71-77. [35] C. Eswaraiah, S. Angadi, B.J.P.t. Mishra, Mechanism of particle separation and ____analysis of fish-hook phenomenon in a circulating air classifier, 218 (2012) 57-63. [36] P. Azimi, D. Zhao, B. Stephens, Estimates of HVAC filtration efficiency for fine and ____ultrafine particles of outdoor origin, Atmospheric environment, 98 (2014) 337-346. [37] N. Wang, Z. Zhu, J. Sheng, S.S. Al-Deyab, J. Yu, B. Ding, Superamphiphobic ____nanofibrous membranes for effective filtration of fine particles, Journal of colloid ____and interface science, 428 (2014) 41-48. [38] H. Gao, Y. Yang, O. Akampumuza, J. Hou, H. Zhang, X. Qin, A low filtration ____resistance three-dimensional composite membrane fabricated via free surface ____electrospinning for effective PM2.5 capture, Environmental Science: Nano, 4 (2017) ____864-875. [39] G.Q. Gu, C.B. Han, C.X. Lu, C. He, T. Jiang, Z.L. Gao, C.J. Li, Z.L. Wang, ____Triboelectric nanogenerator enhanced nanofiber air filters for efficient particulate ____matter removal, ACS nano, 11 (2017) 6211-6217. [40] K. Liu, Z. Xiao, P. Ma, J. Chen, M. Li, Q. Liu, Y. Wang, D. Wang, Large scale poly ____ (vinyl alcohol-co-ethylene)/TiO 2 hybrid nanofibrous filters with efficient fine ____particle filtration and repetitive-use performance, RSC Advances, 5 (2015) 87924-____87931. [41] C. Zhao, X. Zhou, Y. Yue, Determination of pore size and pore size distribution on ____the surface of hollow-fiber filtration membranes: a review of methods, Desalination, ____129 (2000) 107-123. [42] C. Güell, M. Ferrando, F. López, Monitoring and visualizing membrane-based ____processes, John Wiley & Sons, 2009. [43] S.-i. Nakao, Determination of pore size and pore size distribution: 3. Filtration ____membranes, Journal of Membrane Science, 96 (1994) 131-165. [44] R. Riley, J. Gardner, U. Merten, Cellulose acetate membranes: Electron microscopy ____of structure, Science, 143 (1964) 801-803. [45] I. Cabasso, E. Klein, J.K. Smith, Polysulfone hollow fibers. II. Morphology, Journal ____of Applied Polymer Science, 21 (1977) 165-180. [46] U. Merin, M. Cheryan, Ultrastructure of the surface of a polysulfone ultrafiltration ____membrane, Journal of Applied Polymer Science, 25 (1980) 2139-2142. [47] K. Kim, M. Dickson, A. Fane, C. Fell, Electron microscopy in synthetic polymer ____membrane research, Journal of Microscopy, 162 (1991) 403-413. [48] M. Koutake, Observation of UF Membranes' Pores through a Scanning Electron ____Microscope and Their Pure Water Fluxes, Membr., 10 (1985) 310-312. [49] K. Kim, A. Fane, C. Fell, T. Suzuki, M. Dickson, Quantitative microscopic study of ____surface characteristics of ultrafiltration membranes, Journal of membrane science, ____54 (1990) 89-102. [50] G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope, Physical review letters, ____56 (1986) 930. [51] G. Reichelt, Method for determining the bubble point or the largest pore of ____membranes or of filter materials, in, Google Patents, 1988. [52] A. Hernández, J. Calvo, P. Prádanos, F. Tejerina, Pore size distributions in ____microporous membranes. A critical analysis of the bubble point extended method, ____Journal of Membrane Science, 112 (1996) 1-12. [53] A. Abell, K. Willis, D. Lange, Mercury intrusion porosimetry and image analysis of ____cement-based materials, Journal of colloid and interface science, 211 (1999) 39-44. [54] S.K. Bhatia, J.L. Smith, Comparative study of bubble point method and mercury ____intrusion porosimetry techniques for characterizing the pore-size distribution of ____geotextiles, Geotextiles and Geomembranes, 13 (1994) 679-702. [55] L. Wang, X. Wang, Study of membrane morphology by microscopic image analysis ____and membrane structure parameter model, Journal of membrane science, 283 (2006) ____109-115. [56] G. Fimbres-Weihs, D. Wiley, Review of 3D CFD modeling of flow and mass transfer ____in narrow spacer-filled channels in membrane modules, Chemical Engineering and ____Processing: Process Intensification, 49 (2010) 759-781. [57] H.K. Versteeg, W. Malalasekera, An introduction to computational fluid dynamics: ____the finite volume method, Pearson Education, 2007. [58] A. Pak, T. Mohammadi, S. Hosseinalipour, V. Allahdini, CFD modeling of porous ____membranes, Desalination, 222 (2008) 482-488. [59] A.S.J.J.o.A.p. Berman, Laminar flow in channels with porous walls, 24 (1953) 1232-____1235. [60] L. Galowin, L. Fletcher, M.J.A.J. DeSantis, Investigation of laminar flow in a porous ____pipe with variable wall suction, 12 (1974) 1585-1589. [61] V. Nassehi, Modelling of combined Navier–Stokes and Darcy flows in crossflow ____membrane filtration, Chemical Engineering Science, 53 (1998) 1253-1265. [62] E.J. Tuegel, A.R. Ingraffea, T.G. Eason, S.M. Spottswood, Reengineering aircraft ____structural life prediction using a digital twin, International Journal of Aerospace ____Engineering, 2011 (2011). [63] F. Tao, J. Cheng, Q. Qi, M. Zhang, H. Zhang, F. Sui, Digital twin-driven product ____design, manufacturing and service with big data, The International Journal of ____Advanced Manufacturing Technology, 94 (2018) 3563-3576. [64] E. Glaessgen, D. Stargel, The digital twin paradigm for future NASA and US Air ____Force vehicles, in: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural ____Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures ____Conference 14th AIAA, 2012, pp. 1818. [65] S. Boschert, R. Rosen, Digital twin—the simulation aspect, in: Mechatronic ____Futures, Springer, 2016, pp. 59-74. [66] G. Munz, R. Gori, G. Mori, C. Lubello, Powdered activated carbon and membrane ____bioreactors (MBRPAC) for tannery wastewater treatment: long term effect on ____biological and filtration process performances, Desalination, 207 (2007) 349-360. [67] J.C. Chen, Q. Li, M.J.A.i.C. Elimelech, I. Science, In situ monitoring techniques for ____concentration polarization and fouling phenomena in membrane filtration, 107 (2004) ____83-108. [68] A. Latz, S. Rief, A. Wiegmann, Research note: computer simulation of air filtration ____including electric surface charges in 3-dimensional fibrous microstructures, ____Filtration, 6 (2006) 169-172. [69] C. Redenbach, O. Wirjadi, S. Rief, A. Wiegmann, Modeling of ceramic foams for ____filtration simulation, Advanced Engineering Materials, 13 (2011) 171-177. [70] E. Di Nicolo, O. Iliev, K. Leonard, Virtual generation of microfiltration membrane ____geometry for the numerical simulation of contaminant transport, Citeseer, 2015. [71] C. Redon, L. Chermant, J.-L. Chermant, M. Coster, Automatic image analysis and ____morphology of fibre reinforced concrete, Cement and Concrete Composites, 21 ____(1999) 403-412. [72] M. Coster, J.-L. Chermant, Image analysis and mathematical morphology for civil ____engineering materials, Cement and Concrete Composites, 23 (2001) 133-151. [73] N. Neithalath, M.S. Sumanasooriya, O. Deo, Characterizing pore volume, sizes, and ____connectivity in pervious concretes for permeability prediction, Materials ____characterization, 61 (2010) 802-813. [74] V. Rutka, A. Wiegmann, Explicit Jump Immersed Interface Method: Documentation ____for 2D Poisson Code, in, 2005. [75] V. Rutka, A. Wiegmann, Explicit jump immersed interface method for virtual ____material design of the effective elastic moduli of composite materials, Numerical ____Algorithms, 43 (2006) 309-330. [76] A. Wiegmann, K.P. Bube, The explicit-jump immersed interface method: finite ____difference methods for PDEs with piecewise smooth solutions, SIAM Journal on ____Numerical Analysis, 37 (2000) 827-862. [77] L. Cheng, S. Rief, A. Wiegmann, SIMPLE-FFT for flow computations in low ____porosity µCT images, Memory (GB), 51 (2013) 11. [78] A. Wiegmann, A. Zemitis, EJ-HEAT: A fast explicit jump harmonic averaging solver ____for the effective heat conductivity of composite materials, Berichte des Fraunhofer ____ITWM, (2006). [79] S. Linden, A. Wiegmann, H. Hagen, The LIR space partitioning system applied to ____the Stokes equations, Graphical Models, 82 (2015) 58-66. [80] L. Caretto, A. Gosman, S. Patankar, D. Spalding, Two calculation procedures for ____steady, three-dimensional flows with recirculation, in: Proceedings of the third ____international conference on numerical methods in fluid mechanics, Springer, 1973, ____pp. 60-68. [81] B.E. Oran, The fast Fourier transform, in, Englewood Cliffs, NJ: Prentice-Hall, 1974. [82] S. Linden, H. Hagen, A. Wiegmann, The LIR space partitioning system applied to ____Cartesian grids, in: International Conference on Mathematical Methods for Curves ____and Surfaces, Springer, 2012, pp. 324-340. [83] M. Azimian, C. Kühnle, A. Wiegmann, Design and Optimization of Fibrous Filter ____Media Using Lifetime Multipass Simulations, Chemical Engineering & Technology, ____41 (2018) 928-935. [84] A. Wiegmann, S. Rief, A. Latz, Geodict and filterdict: Software for the virtual ____material design of new filter media, Proceedings of New Developments in Filtration ____Technology (Loughborough, Angleterre), (2006). [85] S. Rief, D. Kehrwald, K. Schmidt, A. Wiegmann, Fraunhofer Software Tools ____GeoDict/FilterDict for the Simulation of Diesel Particulate Filters, NAFEM: ____Reliable Use of Numerical Methods in Upfront Simulations. Wiesbaden, Germany, ____ (2007). [86] S. Jennings, The mean free path in air, Journal of Aerosol Science, 19 (1988) 159-____166. [87] A.M. Winslow, Numerical solution of the quasilinear Poisson equation in a ____nonuniform triangle mesh, Journal of computational physics, 1 (1966) 149-172. [88] D. Tabor, R. Winterton, The direct measurement of normal and retarded van der ____Waals forces, Proc. R. Soc. Lond. A, 312 (1969) 435-450. [89] J.N. Israelachvili, Adhesion forces between surfaces in liquids and condensable ____vapours, Surface Science Reports, 14 (1992) 109-159. [90] Y. Kwan, D. Stephenson, J. Alcock, The dependence of pore size distribution on ____porosity in hot isostatically pressed porous alumina, Journal of Porous Materials, 8 ____ (2001) 119-127. [91] M. Kumar, M. Ulbricht, Novel ultrafiltration membranes with adjustable charge ____density based on sulfonated poly (arylene ether sulfone) block copolymers and their ____tunable protein separation performance, Polymer, 55 (2014) 354-365. [92] A.J. Bard, L.R. Faulkner, J. Leddy, C.G. Zoski, Electrochemical methods: ____fundamentals and applications, wiley New York, 1980. [93] P. Kotrappa, Electrets to measure ion concentration in air, Health physics, 89 (2005) ____164-167. [94] T. Luxbacher, Assessment of Surface Charge for Polymer Hollow Fibre Membranes, ____Procedia Engineering, 44 (2012) 1440-1442. [95] C.J. Tsai, J.S. Lin, C. Deshpande, L.C. Liu, Electrostatic charge measurement and ____charge neutralization of fine aerosol particles during the generation process, Particle ____Particle Systems Characterization, 22 (2005) 293-298. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71640 | - |
| dc.description.abstract | 近年來,中空纖維膜愈來愈受重視,並且廣泛應用於不同的領域。中空纖維膜因為有著較大的比表面積且可以達到較小的孔洞,被認為具有潛力應用於超微粒空氣過濾領域。然而,由於中空纖維膜的複雜結構及過濾程序的複雜機制,要使用計算流體力學軟體建立中空纖維三維虛擬模型並進行過濾效能分析至今仍非常具有挑戰性。因此,本研究的目的為提出使用商業軟體GeoDict建立中空纖維三維虛擬模型以進行過濾效能分析之方法,並進行不同模擬模型與文獻實驗數據之比較。
本研究成功使用GeoDict軟體建立中空纖維三維虛擬模型並進行過濾效能分析。於孔洞分析方面,我們使用孔徑分析法及粒徑分析法兩種不同的分析模型進行孔洞分析,並與文獻實驗數據進行比較,結果顯示,孔徑分析法與文獻實驗數據之平均誤差為3.8 %,粒徑分析法與文獻實驗數據之平均誤差41.5 %,相較之下,孔徑分析法較能貼近文獻實驗數據。另外,本研究於流場分析中,使用了三種不同的解析演算法進行氣體通透量之分析,並與文獻實驗數據進行比較,結果顯示,SIMPLE-FFT解析演算法較LIR解析演算法及EJ解析演算法比起來更為精確,此方法與實驗數據相比能達到2.11 %的平均誤差。本研究亦使用GeoDict軟體進行超微粒之長效過濾模擬解析,並分析流場壓降及過濾效能隨時間之變化,結果顯示,本研究之模擬成果能達到與文獻實驗數據相同趨勢之結果,並於長效壓降結果方面達到2.17 %的平均誤差,於過濾效能方面達到0.01 %的平均誤差。本研究提供了一個方法來建構中空纖維膜之三維虛擬模型並進行過濾效能之模擬解析,模擬結果可以幫助未來更有效地進行實驗設計,此模擬方法也可用於建立其他模組在不同條件下之孔洞分析、流場分析及過濾效能分析之探討。 | zh_TW |
| dc.description.abstract | In recent years, hollow fiber membrane module is more and more emphasized and applied to a lot of fields. Due to large surface area and small pore size, hollow fiber membrane provides good potential to remove ultrafine particles. However, it is hard to build 3D (three-dimensional) virtual model of hollow fiber membrane in details because of the asymmetric structure of hollow fiber membrane and the big scale difference between membrane modules and pore morphology. Also, it is still a challenge to analyze the filtration process via Computational Fluid Dynamics (CFD) software because of the complicated fouling mechanism of ultrafine particle filtration. Therefore, the purpose of this study is to develop a methodology for constructing 3D virtual model of hollow fiber membrane and simulate ultrafine particles filtration via commercial GeoDict software.
In this study, a detailed 3D model of hollow fiber membrane was successfully constructed and the filtration process of ultrafine particles removal was simulated. Two different modules in GeoDict software were used to analyze the pore size distribution. Compared to 41.5 % average error of Granulometry module, the results of Porosimetry module achieved only 3.8 % average error, which were more similar to the real data. Besides, three different solvers were provided to simulate the flow in hollow fiber membrane. The results simulated from Semi implicit methods for pressure linked equations with Fast Fourier Transform (SIMPLE-FFT) solver were more accurate than those of Left Identity Right (LIR) solver and Explicit Jump (EJ) solver. Compared to the experimental data, the nitrogen permeance result, which was calculated by combination of Navier-Stokes model and SIMPLE-FFT solver, achieved only 2.11 % error. Moreover, the long-time test was analyzed to get the relationships between process time, pressure drop, and filter efficiency. The simulation results were comparable to the experimental data and showed the same tendency with average error at only 2.17 % for pressure drop and 0.01 % for filter efficiency. This study provides a new methodology to set up a 3D virtual model of hollow fiber membrane precisely and figure out the performance of ultrafine particle filtration. This approach can help followers build models of different membrane structure and simulate the filtration process as well. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:05:17Z (GMT). No. of bitstreams: 1 ntu-108-R05524114-1.pdf: 6404256 bytes, checksum: db4ebc8eaf44ad353f59661bb04fa9aa (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | CONTENTS
ACKNOWLEDGEMENT i 中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES viii LIST OF TABLES xi Chapter 1 INTRODUCTION 1 Chapter 2 LITERATURE SURVEY 3 2.1 Types of Membrane 3 2.2 Membrane Modules 5 2.3 Hollow Fiber Membranes 7 2.4 Fouling Mechanisms 10 2.5 Particulate Matter (PM) 12 2.5.1 Particulate matter scale 12 2.5.2 Particulate matter removal 15 2.6 Pore Size Distribution analysis 17 2.6.1 Microscopic observation method 18 2.6.2 Bubble point test 21 2.6.3 Mercury intrusion porosimetry method 22 2.6.4 Computerized image analysis 23 2.7 Computational Fluid Dynamics (CFD) 24 2.7.1 Membrane simulation technology 25 2.7.2 Hollow fiber simulation 26 2.7.3 Digital Twin concept 28 2.7.4 GeoDict software 30 Chapter 3 THEORETICAL METHOD 31 3.1 Simulation Flow Chart 31 3.2 Building Structure 33 3.3 Pore Size Distribution Analysis 40 3.3.1 Modules of pore size analysis 40 3.3.2 Granulometry module 41 3.3.3 Porosimetry module 42 3.4 Flow Analysis 43 3.4.1 Flow solvers 43 3.4.2 Flow models partial differential equations 47 3.4.3 Flow permeability computation 51 3.5 Filtration Mechanism Analysis 53 3.5.1 Particle tracking 53 3.5.2 Collision models for filter media 56 Chapter 4 RESULTS 58 4.1 Pore Size Distribution Analysis 58 4.1.1 Pore size distribution estimation from experiment 58 4.1.2 Granulometry module 60 4.1.3 Porosimetry module 63 4.1.4 Pore size distribution comparison 66 4.2 Flow Analysis 68 4.3 Long-time Test Analysis 72 4.3.1 Parameters value calculation 72 4.3.2 Long-time test results comparison 75 4.3.3 Life-time of membrane 77 Chapter 5 CONCLUSIONS 79 REFERENCES 81 | |
| dc.language.iso | en | |
| dc.subject | 超微粒空氣過濾 | zh_TW |
| dc.subject | 中空纖維膜 | zh_TW |
| dc.subject | PM2.5 | zh_TW |
| dc.subject | 三維模擬解析 | zh_TW |
| dc.subject | Hollow fiber membrane | en |
| dc.subject | ultrafine particles air filtration | en |
| dc.subject | PM2.5 | en |
| dc.subject | 3D simulation | en |
| dc.title | 中空纖維膜之超微粒於PM2.5空氣過濾之3D原位模擬解析 | zh_TW |
| dc.title | In Situ 3D Simulation for the Filtration Process of Ultrafine Particles Removal from PM2.5 Using Hollow Fiber Membrane | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳嘉文,林義? | |
| dc.subject.keyword | 中空纖維膜,超微粒空氣過濾,PM2.5,三維模擬解析, | zh_TW |
| dc.subject.keyword | Hollow fiber membrane,ultrafine particles air filtration,PM2.5,3D simulation, | en |
| dc.relation.page | 93 | |
| dc.identifier.doi | 10.6342/NTU201900127 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-01-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 6.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
