請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7162
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李秀香(Hsiu-Hsiang Lee) | |
dc.contributor.author | Hao-Hsiang Kao | en |
dc.contributor.author | 高皓翔 | zh_TW |
dc.date.accessioned | 2021-05-19T17:39:55Z | - |
dc.date.available | 2024-08-28 | |
dc.date.available | 2021-05-19T17:39:55Z | - |
dc.date.copyright | 2019-08-28 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-14 | |
dc.identifier.citation | -Abdu U, Bar D, Schüpbach T. (2006) spn-F encodes a novel protein that affects oocyte patterning and bristle morphology in Drosophila. Development 133(8):1477-84.
-Ainsley JA, Pettus JM, Bosenko D. (2003) Enhanced locomotion caused by loss of the Drosophila DEG/ENaC protein Pickpocket1. Curr Biol 13(17): 1557--1563. -Bagri A, Cheng HJ, Yaron A, Pleasure SJ, Tessier-Lavigne M. (2003) Stereotyped pruning of long hippocampal axon branches triggered by retraction inducers of the semaphorin family. Cell 113(3):285-99. -Barr F, Lambright DG. (2010) Rab GEFs and GAPs. Curr Opin Cell Biol 22(4):461-70. -Bitan A, Guild GM, Bar-Dubin D, Abdu U. (2010) Asymmetric microtubule function is an essential requirement for polarized organization of the Drosophila bristle. Mol Cell Biol 30(2):496-507. -Bogard N, Lan L, Xu J, Cohen RS. (2007) Rab11 maintains connections between germline stem cells and niche cells in the Drosophila ovary. Development 134(19):3413-8. -Callejo A, Culi J, Guerrero I. (2008) Patched, the receptor of Hedgehog, is a lipoprotein receptor. Proc Natl Acad Sci U S A 105(3):912-917. -Cocchi E, Drago A, Serretti A. (2016) Hippocampal Pruning as a New Theory of Schizophrenia Etiopathogenesis. Mol Neurobiol 53(3):2065-2081. -Consoulas C, Duch C, Bayline RJ, Levine RB. (2000) Behavioral transformations during metamorphosis: remodeling of neural and motor systems. Brain Res Bull 53(5):571-83. -Cowan WM, Fawcett JW, O'Leary DD, Stanfield BB. (1984) Regressive events in neurogenesis. Science 225(4668):1258-65. -Dubin-Bar D, Bitan A, Bakhrat A, Kaiden-Hasson R, Etzion S, Shaanan B, Abdu U. (2008) The Drosophila IKK-related kinase (Ik2) and Spindle-F proteins are part of a complex that regulates cytoskeleton organization during oogenesis. BMC Cell Biol 9:51. -Ferreira T, Blackman A, Oyrer J, Jayabal A, Chung A, Watt A, Sjöström J and van Meyel D (2014). Neuronal morphometry directly from bitmap images. Nat Methods 11(10): 982–984. -Fortier E, Belote JM. (2000) Temperature-dependent gene silencing by an expressed inverted repeat in Drosophila. Genesis 26(4):240-4. -Gillooly DJ, Morrow IC, Lindsay M, Gould R, Bryant NJ, Gaullier JM, Parton RG, Stenmark H. (2000) Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J 19(17):4577-88. -Goody RS, Müller MP, Wu YW. (2017) Mechanisms of action of Rab proteins, key regulators of intracellular vesicular transport. Biol Chem 398(5-6):565-575. -Grueber WB, Ye B, Moore AW, Jan LY, Jan YN. (2003) Dendrites of distinct classes of Drosophila sensory neurons show different capacities for homotypic repulsion. Curr Biol 13(8):618-26. -Grueber WB, Ye B, Yang CH, Younger S, Borden K, Jan LY, Jan YN. (2007) Projections of Drosophila multidendritic neurons in the central nervous system: links with peripheral dendrite morphology. Development 134(1):55-64. -Han C, Song Y, Xiao H, Wang D, Franc NC, Jan LY, Jan YN. (2014) Epidermal cells are the primary phagocytes in the fragmentation and clearance of degenerating dendrites in Drosophila. Neuron 81(3):544-560. -Homma Y, Fukuda M. (2016) Rabin8 regulates neurite outgrowth in both GEF activity-dependent and -independent manners. Mol Biol Cell 27(13):2107-18. -Horgan CP, Hanscom SR, Jolly RS, Futter CE, McCaffrey MW. (2010) Rab11-FIP3 links the Rab11 GTPase and cytoplasmic dynein to mediate transport to the endosomal- recycling compartment. J Cell Sci 123(Pt 2):181-91. -Innocenti GM, Price DJ. (2005) Exuberance in the development of cortical networks. Nat Rev Neurosci 6(12):955-65. -Issman-Zecharya N, Schuldiner O. (2014) The PI3K class III complex promotes axon pruning by downregulating a Ptc-derived signal via endosome-lysosomal degradation. Dev Cell 31(4):461-73. -Kakegawa W, Mitakidis N, Miura E, Abe M, Matsuda K, Takeo YH, Kohda K, Motohashi J, Takahashi A, Nagao S, Muramatsu S, Watanabe M, Sakimura K, Aricescu AR, Yuzaki M. (2015) Anterograde C1ql1 signaling is required in order to determine and maintain a single-winner climbing fiber in the mouse cerebellum. Neuron 85(2):316- 29. -Kanamori T, Kanai MI, Dairyo Y, Yasunaga K, Morikawa RK, Emoto K. (2013) Compartmentalized calcium transients trigger dendrite pruning in Drosophila sensory neurons. Science 340(6139):1475-8. -Kanamori T, Yoshino J, Yasunaga K, Dairyo Y, Emoto K. (2015) Local endocytosis triggers dendritic thinning and pruning in Drosophila sensory neurons. Nat Commun 6:6515. -Kirilly D, Gu Y, Huang Y, Wu Z, Bashirullah A, Low BC, Kolodkin AL, Wang H, Yu F. (2009) A genetic pathway composed of Sox14 and Mical governs severing of dendrites during pruning. Nat Neurosci 12(12):1497–505. -Kuo CT, Jan LY, Jan YN. (2005) Dendrite-specific remodeling of Drosophila sensory neurons requires matrix metalloproteases, ubiquitin-proteasome, and ecdysone signaling. Proc Natl Acad Sci U S A 102(42):15230–5. -Kuo CT, Zhu S, Younger S, Jan LY, Jan YN. (2006) Identification of E2/E3 ubiquitinating enzymes and caspase activity regulating Drosophila sensory neuron dendrite pruning. Neuron 51(3):283–90. -Kuranaga E, Kanuka H, Tonoki A, Takemoto K, Tomioka T, Kobayashi M, Hayashi S, Miura M. (2006) Drosophila IKK-related kinase regulates nonapoptotic function of caspases via degradation of IAPs. Cell 126(3):583-96. -Lee HH, Jan LY, Jan YN. (2009) Drosophila IKK-related kinase Ik2 and Katanin p60-like 1 regulate dendrite pruning of sensory neuron during metamorphosis. Proc Natl Acad Sci U S A 106(15):6363–8. -Lee T, Luo L. (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22(3):451-61. -Lee T, Marticke S, Sung C, Robinow S, Luo L. (2000) Cell-autonomous requirement of the USP/EcR-B ecdysone receptor for mushroom body neuronal remodeling in Drosophila. Neuron 28(3):807-18. -Liang K, Wei L, Chen L. (2017) Exocytosis, Endocytosis, and Their Coupling in Excitable Cells. Front Mol Neurosci 10:109. -Lin T, Pan PY, Lai YT, Chiang KW, Hsieh HL, Wu YP, Ke JM, Lee MC, Liao SS, Shih HT, Tang CY, Yang SB, Cheng HC, Wu JT, Jan YN, Lee HH. (2015) Spindle-F Is the Central Mediator of Ik2 Kinase-Dependent Dendrite Pruning in Drosophila Sensory Neurons. PLoS Genet 11(11):e1005642. -Loncle N, Williams DW. (2012) An interaction screen identifies headcase as a regulator of large-scale pruning. J Neurosci 32(48):17086-96. -Lou X. (2018) Sensing Exocytosis and Triggering Endocytosis at Synapses: Synaptic Vesicle Exocytosis-Endocytosis Coupling. Front Cell Neurosci 12:66. -Mani R, St Onge RP, Hartman JL 4th, Giaever G, Roth FP. (2008) Defining genetic interaction. Proc Natl Acad Sci U S A 105(9):3461-6. -Marin EC, Watts RJ, Tanaka NK, Ito K, Luo L. (2005) Developmentally programmed remodeling of the Drosophila olfactory circuit. Development 132(4):725-37. -Miller NL, Lawson C, Kleinschmidt EG, Tancioni I, Uryu S, Schlaepfer DD. (2013) A non-canonical role for Rgnef in promoting integrin-stimulated focal adhesion kinase activation. J Cell Sci 126(Pt 21):5074-85 -Nicholson L, Singh GK, Osterwalder T, Roman GW, Davis RL, Keshishian H. (2008) Spatial and temporal control of gene expression in Drosophila using the inducible GeneSwitch GAL4 system. I. Screen for larval nervous system drivers. Genetics 178(1):215-34. -Otani T, Oshima K, Onishi S, Takeda M, Shinmyozu K, Yonemura S, Hayashi S. (2011) IKKε regulates cell elongation through recycling endosome shuttling. Dev Cell 20(2):219-32. -Pasqualato S, Senic-Matuglia F, Renault L, Goud B, Salamero J, Cherfils J. (2004) The structural GDP/GTP cycle of Rab11 reveals a novel interface involved in the dynamics of recycling endosomes. J Biol Chem 279(12):11480-8. -Riedel F, Galindo A, Muschalik N, Munro S. (2018) The two TRAPP complexes of metazoans have distinct roles and act on different Rab GTPases. J Cell Biol 217(2):601-617. -Rouw R, Scholte HS. (2007) Increased structural connectivity in grapheme-color synesthesia. Nat Neurosci 10(6):792-7. -Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7): 676–682. -Schuldiner O, Yaron A. (2015) Mechanisms of developmental neurite pruning. Cell Mol Life Sci 72(1):101-19. -Shapiro RS, Anderson KV. (2006) Drosophila Ik2, a member of the I kappa B kinase family, is required for mRNA localization during oogenesis. Development 133(8):1467-75. -Singh AP, VijayRaghavan K, Rodrigues V. (2010) Dendritic refinement of an identified neuron in the Drosophila CNS is regulated by neuronal activity and Wnt signaling. Development 137(8):1351-60. -Stenmark H, Parton RG, Steele-Mortimer O, Lütcke A, Gruenberg J, Zerial M. (1994) Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J 13(6):1287–1296. -Stone MC, Roegiers F, Rolls MM. (2008) Microtubules have opposite orientation in axons and dendrites of Drosophila neurons. Mol Biol Cell 19(10):4122-9. -Takahashi S, Kubo K, Waguri S, Yabashi A, Shin HW, Katoh Y, Nakayama K. (2012) Rab11 regulates exocytosis of recycling vesicles at the plasma membrane. J Cell Sci 125(Pt 17):4049-57. -Tang G, Gudsnuk K, Kuo SH, Cotrina ML, Rosoklija G, Sosunov A, Sonders MS, Kanter E, Castagna C, Yamamoto A, Yue Z, Arancio O, Peterson BS, Champagne F, Dwork AJ, Goldman J, Sulzer D. (2014) Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83(5):1131-43. -Tang LT, Diaz-Balzac CA, Rahman M, Ramirez-Suarez NJ, Salzberg Y, Lázaro-Peña MI, Bülow HE. (2019) TIAM-1/GEF can shape somatosensory dendrites independently of its GEF activity by regulating F-actin localization. Elife 8. pii: e38949. -Tapia JC, Wylie JD, Kasthuri N, Hayworth KJ, Schalek R, Berger DR, Guatimosim C, Seung HS, Lichtman JW. (2012) Pervasive synaptic branch removal in the mammalian neuromuscular system at birth. Neuron 74(5):816-29. -Taylor CA, Yan J, Howell AS, Dong X, and Shen K. (2015) RAB-10 Regulates Dendritic Branching by Balancing Dendritic Transport. PLoS Genet 11(12):e1005695. Thompson RA, Nelson CA. (2001) Developmental science and the media. Early brain development. Am Psychol 56(1):5–15. -Ullrich O, Reinsch S, Urbé S, Zerial M, Parton RG. (1996) Rab11 regulates recycling through the pericentriolar recycling endosome. J Cell Biol 135(4):913-24. -Urbé S, Huber LA, Zerial M, Tooze SA, Parton RG. (1993) Rab11, a small GTPase associated with both constitutive and regulated secretory pathways in PC12 cells. FEBS Lett 334(2):175-82. -Wang Y, Zhang H, Shi M, Liou YC, Lu L, Yu F. (2017) Sec71 functions as a GEF for the small GTPase Arf1 to govern dendrite pruning of Drosophila sensory neurons. Development 144(10):1851-1862. -Welz T, Wellbourne-Wood J, Kerkhoff E. (2014) Orchestration of cell surface proteins by Rab11. Trends Cell Biol 24(7):407-15. -Wong JJ, Li S, Lim EK, Wang Y, Wang C, Zhang H, Kirilly D, Wu C, Liou YC, Wang H, Yu F. (2013) A Cullin1-based SCF E3 ubiquitin ligase targets the InR/PI3K/TOR pathway to regulate neuronal pruning. PLoS Biol 11(9):e1001657. -Xiong B, Bayat V, Jaiswal M, Zhang K, Sandoval H, Charng WL, Li T, David G, Duraine L, Lin YQ, Neely GG, Yamamoto S, Bellen HJ. (2012) Crag is a GEF for Rab11 required for rhodopsin trafficking and maintenance of adult photoreceptor cells. PLoS Biol 10(12):e1001438. -Yang WK, Chueh YR, Cheng YJ, Siegenthaler D, Pielage J, Chien CT. (2019) Epidermis-Derived L1CAM Homolog Neuroglian Mediates Dendrite Enclosure and Blocks Heteroneuronal Dendrite Bundling. Curr Biol 29(9):1445-1459. -Yu F, Schuldiner O. (2014) Axon and dendrite pruning in Drosophila. Curr Opin Neurobiol 27:192-8. -Zhang H, Wang Y, Wong JJ, Lim KL, Liou YC, Wang H, Yu F. (2014) Endocytic pathways downregulate the L1-type cell adhesion molecule neuroglian to promote dendrite pruning in Drosophila. Dev Cell 30(4):463-78. -Zhang J, Schulze KL, Hiesinger PR, Suyama K, Wang S, Fish M, Acar M, Hoskins RA, Bellen HJ, Scott MP. (2007) Thirty-one flavors of Drosophila rab proteins. Genetics 176(2):1307-22. -Zhen Y, Stenmark H. (2015) Cellular functions of Rab GTPases at a glance. J Cell Sci 128(17):3171-6. -Zhu S, Chen R, Soba P, Jan YN. (2019) JNK signaling coordinates with ecdysone signaling to promote pruning of Drosophila sensory neuron dendrites. Development 146(8). -Zou W, Yadav S, DeVault L, Nung Jan Y, Sherwood DR. (2015) RAB-10-Dependent Membrane Transport Is Required for Dendrite Arborization. PLoS Genet 11(9):e1005484. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7162 | - |
dc.description.abstract | 在脊椎動物和無脊椎動物的發育時期都被發現有神經重塑的過程,神經會接收外源及內源的刺激後引起重塑過程,將神經網路完善化並使其成為在成熟動物中可正常運作的迴路。樹突修剪是神經重塑的其中一種,並會發生在果蠅變態過程中的感覺神經元。果蠅感覺神經元的樹突修剪需要Ik2激酶和其下游的調控因子Spn-F。在此篇研究中,已知在胞吐和再循環過程中扮演重要角色的小GTP酶Rab11被發現作為樹突修剪和樹突型態發生重要的調控因子。此外,我們也藉由基因實驗和蛋白質成像實驗發現Rab11在樹突修剪中可能有需要倚靠Spn-F的功能及不須倚靠Spn-F的功能,其中Rab11不須倚靠Spn-F的功能是參與在負向調控細胞膜上的其中一種細胞黏附分子,Nrg。最後,我們也發現三個已知的Rab11鳥嘌呤核苷酸轉換因子有參與在調控樹突型態發生。總結來說,此篇研究指出了Rab11在神經網路的建立及重塑皆扮演著不可或缺的角色。 | zh_TW |
dc.description.abstract | During development, neuronal remodeling refines neuronal networks in response to external and internal stimuli to establish fully functioning wiring in both vertebrates and invertebrates. Dendrite pruning, which is one of the remodeling processes, occurs in Drosophila sensory neurons during metamorphosis and this pruning process requires Ik2 kinase and its downstream regulator, Spindle-F (Spn-F). Here we demonstrate that a small GTPase Rab11, a regulator in exocytic and recycling pathway, is essential for both dendrite pruning and dendrite morphogenesis. Moreover, our genetic studies and protein imaging experiments revealed that Rab11 could have a Spn-F-dependent function and a Spn-F-independent function, which involves in the degradation of a cell-adhesion molecule Neuroglian (Nrg), in dendrite pruning. Also, we identified three Rab11 guanine nucleotide exchange factors (GEFs) as regulators for dendrite morphogenesis. Altogether, we point out the importance of Rab11 in both establishment and refinement of neuronal networks. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T17:39:55Z (GMT). No. of bitstreams: 1 ntu-108-R06448002-1.pdf: 3545191 bytes, checksum: 1419df4cace4627461cb2274bc65dd43 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 誌謝……………………………………………………………….………………...i
摘要……………………………………………………………….………………...ii Abstract…………………………………………………………………….……iii Contents.………………………………………………………………………….iv List of Figures……………...……………………………………..vi List of Tables……………...………..………………………..vii Introduction………………………………………………………………..……1 Developmental neuronal remodeling………….….1 Neurite pruning…………………………………………………….……….2 Dendrite pruning of sensory neurons in Drosophila....3 Ik2/Spn-F pathway in dendrite pruning of Drosophila….…5 Rab11 and its roles in cellular trafficking………………….6 Methods…………………………………………………………………………...….…8 Results………………………………………………………………………….………14 Rab11 GTPase is required for dendrite pruning in ddaC neurons…………………14 Rab11 is crucial for dendrite morphogenesis in ddaC neurons………….……..15 Rab11 is indeed required for dendrite pruning in ddaC neurons…….…………….16 Dendrite pruning defects were not found in the ddaC neurons with mutation of the known Rab11 GEFs genes……18 The three known Rab11 GEFs participate in regulation of dendrite morphogenesis in ddaC neurons.………19 Endocytosis is impaired in Rab11 mutant neurons………...20 The Nrg-internalizing endocytic pathway is impaired in Rab11 mutant neurons…... 23 Spn-F is not required for maintaining Nrg- internalizing endocytic pathway in dendrite pruning of ddaC neurons………………………24 There is a genetic interaction between Rab11 and spn-F in dendrite pruning of ddaC neurons.........25 Ik2 kinase activation and Spn-F dispersion are normal in Rab11 mutant neurons...... 26 The Rab11-interacting domain of Spn-F is crucial for dendrite pruning in ddaC neurons..........28 Discussion…………………………………………………………………………...…30 Reference……………………………………………………………………...…….…40 Figures…………………………………………………………………………….…... 51 Tables…………………………………………………...…………………………....... 84 | |
dc.language.iso | en | |
dc.title | Rab11在果蠅神經元樹突修剪所扮演之角色 | zh_TW |
dc.title | The role of Rab11 GTPase in neuronal pruning of Drosophila sensory neurons | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 徐立中(Li-Chung Hsu),鄭旭辰(Hsu-Chen Cheng) | |
dc.subject.keyword | 神經重塑,樹突修剪,樹突型態發生,Ik2 激?,Spn-F,Rab11,Crag,Parcas,TRAPP complex II,Nrg, | zh_TW |
dc.subject.keyword | neuronal remodeling,dendrite pruning,dendrite morphogenesis,Ik2 kinase,Spindle-F (Spn-F),Rab11,Crag,Parcas,transport protein particle (TRAPP) complex II,Neuroglian (Nrg), | en |
dc.relation.page | 84 | |
dc.identifier.doi | 10.6342/NTU201902132 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2019-08-15 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
dc.date.embargo-lift | 2024-08-28 | - |
顯示於系所單位: | 分子醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf | 3.46 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。