Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71597
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor閔明源(Ming-Yuan Min)
dc.contributor.authorJung-Chien Hsiehen
dc.contributor.author謝戎建zh_TW
dc.date.accessioned2021-06-17T06:04:11Z-
dc.date.available2019-02-12
dc.date.copyright2019-02-12
dc.date.issued2019
dc.date.submitted2019-01-24
dc.identifier.citationAston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci., 28, 403-450.
Aston-Jones, G., Ennis, M., Pieribone, V. A., Nickell, W. T., & Shipley, M. T. (1986). The brain nucleus locus coeruleus: restricted afferent control of a broad efferent network. Science, 234(4777), 734-737.
Aston-Jones, G., Zhu, Y., & Card, J. P. (2004). Numerous GABAergic afferents to locus ceruleus in the pericerulear dendritic zone: possible interneuronal pool. Journal of Neuroscience, 24(9), 2313-2321.
Baker, H., & Spencer, R. (1986). Transneuronal transport of peroxidase-conjugated wheat germ agglutinin (WGA-HRP) from the olfactory epithelium to the brain of the adult rat. Experimental brain research, 63(3), 461-473.
Bouret, S., Duvel, A., Onat, S., & Sara, S. J. (2003). Phasic activation of locus ceruleus neurons by the central nucleus of the amygdala. Journal of Neuroscience, 23(8), 3491-3497.
Buttry, J. L., & Goshgarian, H. G. (2015). WGA-Alexa transsynaptic labeling in the phrenic motor system of adult rats: Intrapleural injection versus intradiaphragmatic injection. Journal of neuroscience methods, 241, 137-145.
Carter, M. E., Yizhar, O., Chikahisa, S., Nguyen, H., Adamantidis, A., Nishino, S., . . . De Lecea, L. (2010). Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nature neuroscience, 13(12), 1526.
Ciocchi, S., Herry, C., Grenier, F., Wolff, S. B., Letzkus, J. J., Vlachos, I., . . . Stadler, M. B. (2010). Encoding of conditioned fear in central amygdala inhibitory circuits. Nature, 468(7321), 277.
Du, K., Wu, Y.-W., Lindroos, R., Liu, Y., Rózsa, B., Katona, G., . . . Kotaleski, J. H. (2017). Cell-type–specific inhibition of the dendritic plateau potential in striatal spiny projection neurons. Proceedings of the National Academy of Sciences, 114(36), E7612-E7621.
Gittis, A. H., & Kreitzer, A. C. (2012). Striatal microcircuitry and movement disorders. Trends in neurosciences, 35(9), 557-564.
Hofmeister, J., & Sterpenich, V. (2015). A role for the locus ceruleus in reward processing: encoding behavioral energy required for goal-directed actions. Journal of Neuroscience, 35(29), 10387-10389.
Houser, C. R., Vaughn, J. E., Barber, R. P., & Roberts, E. (1980). GABA neurons are the major cell type of the nucleus reticularis thalami. Brain research, 200(2), 341-354.
Itaya, S. K., & Van Hoesen, G. W. (1982). WGA-HRP as a transneuronal marker in the visual pathways of monkey and rat. Brain Research, 236(1), 199-204.
Kinoshita, N., Mizuno, T., & Yoshihara, Y. (2002). Adenovirus-mediated WGA gene delivery for transsynaptic labeling of mouse olfactory pathways. Chemical senses, 27(3), 215-223.
McBain, C. J., & Fisahn, A. (2001). Interneurons unbound. Nature Reviews Neuroscience, 2(1), 11.
McCall, J. G., Al-Hasani, R., Siuda, E. R., Hong, D. Y., Norris, A. J., Ford, C. P., & Bruchas, M. R. (2015). CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced anxiety. Neuron, 87(3), 605-620.
Pinault, D. (2004). The thalamic reticular nucleus: structure, function and concept. Brain Research Reviews, 46(1), 1-31.
Risold, P., Canteras, N., & Swanson, L. (1994). Organization of projections from the anterior hypothalamic nucleus: a Phaseolus vulgaris‐leucoagglutinin study in the rat. Journal of Comparative Neurology, 348(1), 1-40.
Schmid, L. C., Mittag, M., Poll, S., Steffen, J., Wagner, J., Geis, H.-R., . . . Remy, S. (2016). Dysfunction of somatostatin-positive interneurons associated with memory deficits in an Alzheimer’s disease model. Neuron, 92(1), 114-125.
Schwab, M., Javoy-Agid, F., & Agid, Y. (1978). Labeled wheat germ agglutinin (WGA) as a new, highly sensitive retrograde tracer in the rat brain hippocampal system. Brain research, 152(1), 145-150.
Schwarz, L. A., Miyamichi, K., Gao, X. J., Beier, K. T., Weissbourd, B., DeLoach, K. E., . . . Kremer, E. J. (2015). Viral-genetic tracing of the input–output organization of a central noradrenaline circuit. Nature, 524(7563), 88.
Takeuchi, T., Duszkiewicz, A. J., Sonneborn, A., Spooner, P. A., Yamasaki, M., Watanabe, M., . . . Greene, R. W. (2016). Locus coeruleus and dopaminergic consolidation of everyday memory. Nature, 537(7620), 357.
Tamamaki, N., Yanagawa, Y., Tomioka, R., Miyazaki, J. I., Obata, K., & Kaneko, T. (2003). Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67‐GFP knock‐in mouse. Journal of Comparative Neurology, 467(1), 60-79.
Usher, M., Cohen, J. D., Servan-Schreiber, D., Rajkowski, J., & Aston-Jones, G. (1999). The role of locus coeruleus in the regulation of cognitive performance. Science, 283(5401), 549-554.
Verstegen, A. M., Vanderhorst, V., Gray, P. A., Zeidel, M. L., & Geerling, J. C. (2017). Barrington's nucleus: Neuroanatomic landscape of the mouse “pontine micturition center”. Journal of Comparative Neurology, 525(10), 2287-2309.
Walling, S. G., Brown, R. A., Miyasaka, N., Yoshihara, Y., & Harley, C. W. (2012). Selective wheat germ agglutinin (WGA) uptake in the hippocampus from the locus coeruleus of dopamine-β-hydroxylase-WGA transgenic mice. Frontiers in behavioral neuroscience, 6, 23.
Yoshihara, Y., Mizuno, T., Nakahira, M., Kawasaki, M., Watanabe, Y., Kagamiyama, H., . . . Tabuchi, K. (1999). A genetic approach to visualization of multisynaptic neural pathways using plant lectin transgene. Neuron, 22(1), 33-41.
Yuste, R. (2008). Circuit neuroscience: the road ahead. Frontiers in neuroscience, 2, 17.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71597-
dc.description.abstract跨突觸追蹤(Transneuronal tracing)可以提供主要神經元和中間神經元連結的直接證據,但現今仍沒有適合的追蹤劑能夠在微迴路尺度下標定特定的細胞群。為了解決這個問題,我們設計了cre重組酶活化小麥凝集素血清二型類腺病毒(AAV2-CMV-DIO-WGA),此病毒可以使帶有cre重組酶的細胞表現小麥凝集素(wheat germ agglutinin)(WGA),並在細胞內累積進行跨突觸運輸,達到追蹤的效果。搭配免疫組織化學染色法,我們發現由這隻病毒所製造的小麥凝集素在海馬迴(CA3)、網狀視丘(Reticular thalamus,RT)以及下視丘室旁核(paraventricular nucleus, PVN)中具有逆向追蹤(retrograde tracing)的特性。在轉基因小鼠的實驗裡,我們將cre重組酶活化小麥凝集素血清二型類腺病毒打入TH-cre小鼠的藍斑核(locus coeruleus),的確僅具有cre重組酶的主要神經元會表現小麥凝集素。除此之外,我們也發現一些位於peri-LC區域的非主要神經元也有小麥凝集素免疫反應,我們推論這些細胞就是和主要神經元有連結的中間神經元,因為在橋腦區域除了藍斑核以外沒有其他的兒茶酚安類家族的神經元,且TH-cre這隻基轉小鼠在藍斑核中並沒有cre重組酶表現外漏的問題。利用TH-cre和GAD-GFP轉基因小鼠的雜交後代,我們發現這些藍斑核的中間神經元有16%是丙胺基丁酸神經元(gamma-Aminobutyric acid -ergic neuron)(GABAergic)、27%具有FoP2這個轉錄因子。在形態學上,我們的實驗結果提供了藍斑核中間神經元存在的直接證據,這些中間神經元可能在功能上,彙整來自不同腦區的訊息到藍斑核主要神經元,進而調節其電生理性質,但至於這些中間神經元的生理功能仍需近一步的實驗分析。zh_TW
dc.description.abstractIn morphology, trans-synaptic tracing can provide direct evidence of the connectivity between nucleus. In modern neuroscience, there are lots of trans-synaptic tracers to use, such as fluoro-gold, chlorea toxin B, pseudo-rabies virus. But none of them can perform cell-type specific tracing under the scale of microcircuit due to non-cell type specificity and leak out expression. Yoshihara Yoshihara et al. have validated the usefulness of wheat germ agglutinin, a commonly used transneuronal tracer, in several genetic approaches (Yoshihara et al., 1999). We chose the AAV-mediated WGA method described by Yoshihiro Yoshihara, and designed AAV2-CMV-DIO-WGA, a serotype 2 adeno-associative virus carrying double floxed inverted sequence of wheat germ agglutinin(WGA). Using this virus, we found the WGA expressed by this virus had retrograde trans-synaptic activity (CA3, RT, PVN) and had no leak-out-expression. We are currently interested in the microcircuit of locus coeruleus. We then used TH-cre mice to perform the cell-type specific microcircuit tracing. This resulted in the observation of interneuron pool in peri-LC region, which have not been reported in mice. Among these interneurons, there were about 16% GABAergic interneurons and 27% FoxP2 posotive interneurons. The result here provided a direct evidence for the existence of LC interneurons in peri-LC region, and these interneurons may play a role in integrating information from other brain regions, such as amygdala and pre-frontal cortex. We need more experiments to analyze the physiological function of these interneurons.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:04:11Z (GMT). No. of bitstreams: 1
ntu-108-R05b21008-1.pdf: 2936977 bytes, checksum: 8b984d5a5bba8c86331dffdb5337f399 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Content v
Chapter 1 Introduction 1
Chapter 2 Materials and Methods 4
2.1 Animals 4
2.2 Virus preparation and injection 4
2.3 Perfusion and section 5
2.4 Immunohistochemistry 6
2.5 Confocal imaging 9
2.6 Electrophysiology 9
2.7 Opto-stimulation 10
Chapter 3 Results 11
3.1 AAV2-CMV-floxed stop-WGA construction and experimental flow chart. 11
3.2 Validation of transneuronal tracing efficiency of AAV2-CMV-DIO-WGA in CA3. 11
3.3 Cell-type specific WGA tracing of RT using Vgat-cre mouse. 12
3.4 Cell-type specific WGA tracing of PVN using AVP-cre mouse 12
3.5 Cell-type specific WGA tracing of LC using TH-cre mouse 13
3.6 Leakage control of cre expression in LC of TH-cre mouse using AAV-eF1a-DIO-eYFP 13
3.7 Interneurons targeted by WGA were 16.7% GABAergic in peri-LC region. 14
3.8 Interneurons targeted by WGA were 26.7% FoxP2 positive in peri-LC region. 14
3.9 GABAergic interneurons targeted by WGA in peri-LC receiving input from CeA. 15
3.10 Non-LC neurons in peri-LC region receiving pure GABAa input from CeA in ex-vivo recording. 15
3.11 Validation of the effect of the input from CeA on LC using 40 hz opto-stimulation. 16
Chapter 4 Discussion 18
4.1 AAV2-CMV-floxed stop-WGA is a good material to perform cell-type specific tracing in the scale of microcircuit. 18
4.2 Cell-type specific tracing using AAV2-CMV-DIO-WGA revealed an interneuron pool in peri-LC region 19
4.3 WGA expression level in first order neurons is different in CA3, RT, PVN and LC tracing experiment 20
4.4 WGA expressed by AAV2-CMV-floxed stop-WGA exhibit multi-synaptic tracing 21
4.5 Physiological effect of CeA to LC was not robust in opto-stimulation experiments 21
Chapter 5 Summary 23
Chapter 6 Reference 24
Chapter 7 Figures 26
Figure 1. WGA tracing method and hypothetical model of interaction between principle neuron and interneuron in Locus coeruleus. 26
Figure 2. Plasmid structure. 27
Figure 3. Cre-dependent expression in HEK293 cell line 28
Figure 4. Virus package and injection 29
Figure 5. Transneuronal evaluation of AAV2-CMV-DIO-WGA in CA3 of wild type mouse. 30
Figure 6. Transneuronal evaluation of AAV2-CMV-DIO-WGA in reticular thalamus (RT) of vesicular GABA transporter-cre (Vgat-cre) mouse. 31
Figure 7. Cell type specific WGA tracing in paraventricular nucleus (PVN) of vasopressin (AVP)-cre mouse using AAV2-CMV-DIO-WGA. 33
Figure 8. DAB staining of cell type specific WGA tracing in PVN of AVP-cre mouse using AAV2-CMV-DIO-WGA. 34
Figure 9. Cell type specific WGA in LC of TH-cre mouse using AAV2-CMV-floxed stop-WGA. 35
Figure 10. DAB staining of cell type specific WGA tracing in LC of TH-cre mouse using AAV2-CMV-DIO-WGA. 36
Figure 11. Leakage control of cre expression in LC of TH-cre mouse using AAV-eF1a-DIO-eYFP. 37
Figure 11. Population of GABAergic interneurons in LC of TH-cre X GAD-GFP mouse using AAV2-CMV-DIO -WGA. 38
Figure 12. Population of GABAergic interneurons and FoxP2 interneurons in LC of TH-cre X GAD-GFP mouse using AAV2-CMV-DIO -WGA. 40
Figure 13. WGA tracing infection rate, transneuronal rate and interneurons population 41
Figure 14. Input from CeA targeting GABAergic interneurons in peri-LC. 42
Figure 15. Non-LC neurons in peri-LC region receiving pure GABAa input from CeA in ex-vivo recording. 43
Figure 16. Delayed activation of phasic response of LC principle neurons using 40hz 10s blue light stimulation. 45
Chapter 8 Supplementary data 47
Supplementary data 1. Another example of Interneuron in peri-LC region receiving pure GABAa input from CeA in ex-vivo recording. 47
Supplementary data 2. Whole predicted sequence of Plasmid structure of AAV2-CMV-DIO-WGA 49
dc.language.isoen
dc.subject微迴路追蹤zh_TW
dc.subject藍斑核zh_TW
dc.subject抑制性中間神經元zh_TW
dc.subject小麥血清素zh_TW
dc.subjectWheat germ agglutininen
dc.subjectmicrocircuit tracingen
dc.subjectLocus coeruleusen
dc.subjectGABAergic interneuronen
dc.subjectFoxP2en
dc.title利用小麥凝集素進行跨突觸追蹤探討藍斑核中間神經元之分布zh_TW
dc.titleIdentification of locus coeruleus interneuron using trans-synaptic tracer wheat germ agglutininen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳志成(Chih-Cheng Chen),陳示國(Shih-Kuo Chen),楊琇雯(Hsiu-Wen Yang)
dc.subject.keyword小麥血清素,微迴路追蹤,藍斑核,抑制性中間神經元,zh_TW
dc.subject.keywordWheat germ agglutinin,microcircuit tracing,Locus coeruleus,GABAergic interneuron,FoxP2,en
dc.relation.page52
dc.identifier.doi10.6342/NTU201900180
dc.rights.note有償授權
dc.date.accepted2019-01-25
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
2.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved