請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7158
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭克聲 | |
dc.contributor.author | Bo-Yu Chen | en |
dc.contributor.author | 陳柏宇 | zh_TW |
dc.date.accessioned | 2021-05-19T17:39:54Z | - |
dc.date.available | 2022-08-18 | |
dc.date.available | 2021-05-19T17:39:54Z | - |
dc.date.copyright | 2019-08-18 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-14 | |
dc.identifier.citation | Adams BJ, Papa F (2000). Urban Stormwater Management Planning with Analytical Probabilistic Models. Wiley, New York.
Al Mamoon A, Rahman A (2014). Uncertainty in design rainfall estimation: A review. J. Hydrol. Environ. Res, 2(1):65-75. Anagnostopoulou C, Tolika K (2012). Extreme precipitation in Europe: statistical threshold selection based on climatological criteria. Theoretical and Applied Climatology, 107(3-4):479-489. Ariff NM, Jemain AA, Ibrahim K, Zin WW (2012). IDF relationships using bivariate copula for storm events in Peninsular Malaysia. Journal of Hydrology, 470:158-171. Bačová-Mitková V, Onderka M (2010). Analysis of extreme hydrological events on the Danube using the peak over threshold method. Journal of Hydrology and Hydromechanics, 58(2):88-101. Bezak N, Brilly M, Šraj M (2014). Comparison between the peaks-over-threshold method and the annual maximum method for flood frequency analysis. Hydrological Sciences Journal, 59(5):959-977. Bhunya PK, Berndtsson R, Jain SK, Kumar R (2013). Flood analysis using negative binomial and Generalized Pareto models in partial duration series (PDS). Journal of Hydrology, 497:121-132. Bonta JV (2004). Stochastic simulation of storm occurrence, depth, duration, and within-storm intensities. Transactions of the ASAE, 47(5):1573. Bonta JV, Rao AR (1988). Factors affecting the identification of independent storm events. Journal of Hydrology, 98(3-4):275-293. Bracken LJ, Cox NJ, Shannon J (2008). The relationship between rainfall inputs and flood generation in south–east Spain. Hydrological Processes, 22(5):683-696. Cameron AC, Trivedi PK (1996). Count data models for financial data. Handbook of statistics, 14(12):363-391. Chin RJ, Lai SH, Chang KB, Jaafar WZW, Othman F (2016). Relationship between minimum inter‐event time and the number of rainfall events in Peninsular Malaysia. Weather, 71(9):213-218. Coles S, Bawa J, Trenner L, Dorazio P (2001). An introduction to statistical modeling of extreme values. Springer, London. Conover WJ (1972). A Kolmogorov goodness-of-fit test for discontinuous distributions. Journal of the American Statistical Association, 67(339):591-596. Consul PC, Jain GC (1973). A generalization of the Poisson distribution. Technometrics, 15(4):791-799. Cunnane C (1973). A particular comparison of annual maxima and partial duration series methods of flood frequency prediction. Journal of Hydrology, 18(3-4):257-271. Cunnane C (1978). Unbiased plotting positions—a review. Journal of Hydrology, 37(3-4):205-222. Cunnane C (1979). A note on the Poisson assumption in partial duration series models. Water Resources Research, 15(2):489-494. D'Agostino RB (1986). Goodness-of-fit-techniques. Marcel Dekker, New York. De Michele C, Salvadori G (2003). A generalized Pareto intensity‐duration model of storm rainfall exploiting 2‐copulas. Journal of Geophysical Research: Atmospheres, 108(D2):1-11. Dunkerley D (2008). Identifying individual rain events from pluviograph records:a review with analysis of data from an Australian dryland site. Hydrological Processes, 22(26):5024-5036. Dzupire NC, Ngare P, Odongo L (2018). A poisson-gamma model for zero inflated rainfall data. Journal of Probability and Statistics, 2018(10):1-13. Eastoe EF, Tawn JA (2010). Statistical models for overdispersion in the frequency of peaks over threshold data for a flow series. Water resources research, 46(2):W02510. doi:10.1029/2009WR007757. Efron B (1979). Bootstrap methods: another look at the Jackknife. The Annals of Statistics, 7(1):1-26. Efron B, Tibshirani RJ (1993). An Introduction to the Bootstrap. Chapman & Hall, Boca Raton, FL. Ferreira A, De Haan L (2015). On the block maxima method in extreme value theory: PWM estimators. The Annals of statistics, 43(1):276-298. Fisher RA, Tippett LHC (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. In Mathematical Proceedings of the Cambridge Philosophical Society 24(2):180-190. Gnedenko B (1943). Sur la distribution limite du terme maximum d'une serie aleatoire. Annals of mathematics, 44(3):423-453. Grace RA, Eagleson PS (1967). A model for generating synthetic sequences of short-time-interval rainfall depths. Proceedings of International Hydrology Symposium, Fort Collins, Colorado, 1:268-276 Greenwood JA, Landwehr JM, Matalas NC, Wallis JR (1979). Probability weighted moments: definition and relation to parameters of several distributions expressable in inverse form. Water resources research, 15(5):1049-1054. Gumbel EJ (1958). Statistics of Extremes, Columbia Univ. Press, New York. Guo Y, Adams BJ (1998). Hydrologic analysis of urban catchments with event‐based probabilistic models: 1. Runoff volume. Water Resources Research, 34(12):3421-3431. Haile AT, Rientjes TH, Habib E, Jetten V, Gebremichael M (2011). Rain event properties at the source of the Blue Nile River. Hydrology and Earth System Sciences, 15(3):1023-1034. Hanel M, Máca P (2014). Spatial variability and interdependence of rain event characteristics in the Czech Republic. Hydrological processes, 28(6):2929-2944. Harrison XA (2015). A comparison of observation-level random effect and Beta-Binomial models for modelling overdispersion in Binomial data in ecology evolution. PeerJ, 3:e1114. Hosking JRM (1990). L-moment: analysis and estimation of distributions using linear-combinations of order-statistics. Journal of the Royal Statistical Society. Series B: Methodological, 52(1):105-124. Hosking JRM and Wallis JR (1997). Regional Frequency Analysis: An Approach Based on L-moments. Cambridge University Press, Cambridge Hosking JRM, Wallis JR, Wood EF (1985). Estimation of the generalized extreme-value distribution by the method of probability-weighted moments. Technometrics, 27(3):251-261 Hou JC (2010). 雙變數迦瑪分布頻率因子序率模擬法及其應用於評估氣候變遷對年颱風降雨量影響之研究. 臺灣大學生物環境系統工程學研究所學位論文 Iadanza C, Trigila A, Napolitano F (2016). Identification and characterization of rainfall events responsible for triggering of debris flows and shallow landslides. Journal of Hydrology, 541:230-245 Joe H, Zhu R (2005). Generalized Poisson distribution: the property of mixture of Poisson and comparison with negative binomial distribution. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 47(2):219-229 Joo J, Lee J, Kim J, Jun H, Jo D (2014). Inter-event time definition setting procedure for urban drainage systems. Water, 6(1):45-58 Jun C, Qin X, Gan TY, Tung YK, De Michele C (2017). Bivariate frequency analysis of rainfall intensity and duration for urban stormwater infrastructure design. Journal of Hydrology, 553:374-383 Jun C, Qin X, Tung YK, De Michele C (2018). Storm event-based frequency analysis method. Hydrology Research, 49(3):700-710 Kao S, Govindaraju R (2007) A bivariate frequency analysis of extreme rainfall with implications for design. J Geophys Res 112. doi:10.1029/2007JD008522 Karlis D, Xekalaki E (2005). Mixed poisson distributions. International Statistical Review, 73(1):35-58 Katz RW, Parlange MB (1998). Overdispersion phenomenon in stochastic modeling of precipitation. Journal of Climate, 11(4):591-601 Kyselý J (2008). A cautionary note on the use of nonparametric bootstrap for estimating uncertainties in extreme-value models. Journal of Applied Meteorology and Climatology, 47(12):3236-3251 Kyselý J (2010). Coverage probability of bootstrap confidence intervals in heavy-tailed frequency models, with application to precipitation data. Theoretical and applied climatology, 101(3-4):345-361 Lang M, Ouarda TBMJ, Bobée B (1999). Towards operational guidelines for over-threshold modeling. Journal of Hydrology, 225(3-4):103-117 Lee CH, Kim TW, Chung G, Choi M, Yoo C (2010). Application of bivariate frequency analysis to the derivation of rainfall–frequency curves. Stochastic Environmental Research and Risk Assessment, 24(3):389-397 Lindén A, Mäntyniemi S (2011). Using the negative binomial distribution to model overdispersion in ecological count data. Ecology, 92(7):1414-1421 Liou JJ, Wu YC, Cheng KS (2008). Establishing acceptance regions for L-moments based goodness-of-fit tests by stochastic simulation. Journal of Hydrology, 355(1-4):49-62 Liu, J., Sample, D. J., Zhang, H. (2014). Frequency analysis for precipitation events and dry durations of Virginia. Environmental Modeling & Assessment, 19(3):167-178 Madsen H, Rasmussen PF, Rosbjerg D (1997). Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events: 1. At‐site modeling. Water resources research, 33(4):747-757 Marin CT, Bouten W, Sevink J (2000). Gross rainfall and its partitioning into throughfall, stemflow and evaporation of intercepted water in four forest ecosystems in western Amazonia. Journal of Hydrology, 237(1-2):40-57 Mcmahon BJ, Purvis G, Sheridan H, Siriwardena GM, Parnell AC (2017). A novel method for quantifying overdispersion in count data and its application to farmland birds. Ibis, 159(2):406-414 Medina-Cobo MT, García-Marín AP, Estévez J, Ayuso-Muñoz JL (2016). The identification of an appropriate Minimum Inter‐event Time (MIT) based on multifractal characterization of rainfall data series. Hydrological Processes, 30(19):3507-3517 Nagy BK, Mohssen M, Hughey KFD (2017). Flood frequency analysis for a braided river catchment in New Zealand: Comparing annual maximum and partial duration series with varying record lengths. Journal of Hydrology, 547:365-374 Nelsen RB (2006). An introduction to copulas. Springer Science & Business Media, New York Panagoulia D, Economou P, Caroni C (2014). Stationary and nonstationary generalized extreme value modelling of extreme precipitation over a mountainous area under climate change. Environmetrics, 25(1):29-43 Park M, Yoo C, Kim H, Jun C (2013). Bivariate frequency analysis of annual maximum rainfall event series in Seoul, Korea. Journal of Hydrologic Engineering, 19(6):1080-1088 Peters O, Christensen K (2002). Rain: Relaxations in the sky. Physical Review E, 66(3):036120 Pham HX, Shamseldin AY, Melville B (2013). Statistical properties of partial duration series: Case study of North Island, New Zealand. Journal of Hydrologic Engineering, 19(4):807-815. Plan EL (2014). Modeling and simulation of count data. CPT: pharmacometrics & systems pharmacology, 3(8):1-12. Powell DN, Khan AA, Aziz NM, Raiford JP (2007). Dimensionless rainfall patterns for South Carolina. Journal of Hydrologic Engineering, 12(1):130-133. Restrepo PJ, Eagleson PS (1982). Identification of independent rainstorms. J. Hydrol., 55:303-319. Sane Y et al (2018). Intensity–duration–frequency (IDF) rainfall curves in Senegal. Natural Hazards and Earth System Sciences, 18(7):1849-1866. Schendel T, Thongwichian R (2015). Flood frequency analysis: Confidence interval estimation by test inversion bootstrapping. Advances in water resources, 83:1-9. Schendel T, Thongwichian R (2017). Confidence intervals for return levels for the peaks-over-threshold approach. Advances in water resources, 99:53-59. Sklar M (1959). Fonctions de repartition an dimensions et leurs marges. Publ. inst. statist. univ. Paris, 8:229-231. Sordo-Ward A, Bianucci P, Garrote L, Granados A (2016). The influence of the annual number of storms on the derivation of the flood frequency curve through event-based simulation. Water, 8(8):335. Svensson C, Jones DA (2010). Review of rainfall frequency estimation methods. Journal of Flood Risk Management, 3(4):296-313. Todorovic P, Vujica M (1969). Stochastic Process of Precipitation. Hydrology papers (Colorado State University), no. 35 Tsukatani T, Shigemitsu K (1980). Simplified Pearson distributions applied to air pollutant concentration. Atmospheric Environment (1967), 14(2):245-253. US Environmental Protection Agency (1997). Guiding principles for Monte Carlo analysis. USEPA Risk Assessment Forum, Washington, DC Vandenberghe S, Verhoest NEC, Onof C, De Baets B (2011). A comparative copula‐based bivariate frequency analysis of observed and simulated storm events: A case study on Bartlett‐Lewis modeled rainfall. Water Resources Research, 47(7):197-203. Vicente-Serrano SM, Beguería-Portugués S (2003). Estimating extreme dry‐spell risk in the middle Ebro valley (northeastern Spain): a comparative analysis of partial duration series with a general Pareto distribution and annual maxima series with a Gumbel distribution. International Journal of Climatology, 23(9):1103-1118. Vrban S, Wang Y, McBean EA, Binns A, Gharabaghi B (2018). Evaluation of Stormwater Infrastructure Design Storms Developed Using Partial Duration and Annual Maximum Series Models. Journal of Hydrologic Engineering, 23(12):04018051. Wang QJ (1991). The POT model described by the tugeneralized Pareto distribution with Poisson arrival rate. Journal of Hydrology, 129(1-4):263-280. Wang W, Yin S, Xie Y, Nearing MA (2019). Minimum Inter-Event Times for Rainfall in the Eastern Monsoon Region of China. Transactions of The ASABE 62(1):9-18 Wu YC, Liou JJ, Su YF, Cheng KS (2011). Establishing acceptance regions for L-moments based goodness-of-fit tests for the Pearson type III distribution. Stochastic environmental research and risk assessment, 26(6):873-885. Xu YP, Booij MJ, Tong YB (2010). Uncertainty analysis in statistical modeling of extreme hydrological events. Stochastic environmental research and risk assessment, 24(5):567-578. Yoo C, Park C, Jun C (2015). Evaluation of the concept of critical rainfall duration by bivariate frequency analysis of annual maximum independent rainfall event series in Seoul, Korea. Journal of Hydrologic Engineering, 21(1):05015016. Yue S, Rasmussen P (2002). Bivariate frequency analysis: discussion of some useful concepts in hydrological application. Hydrological Processes, 16(14):2881-2898. 許恩菁 (1999). 設計暴雨雨型序率模式之研究. 臺灣大學生物環境系統工程學研究所學位論文 經濟部水利署. (2009). 莫拉克颱風暴雨量及洪流量分析. 臺大生物環境系統工程學系. (2001). 水文設計應用手冊, 第一版. 經濟部水資源局. 鄭克聲, 陳葦庭, 葉彙中. (1999). 坡地開發滯留池之水文設計探討. 臺灣水利, 47(4):41-57. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7158 | - |
dc.description.abstract | 在水利工程與風險評估中降雨頻率分析是不可或缺的一步,其中年最大值數列法因為其簡單快速的步驟而最廣為使用。年最大值數列法以極端值理論 (extremal types theorem) 為基礎,使用廣義極端值分布 (Generalized Extreme Value Distribution, GEV) 配適年最大值數列並進行估計。然而年最大值數列法每年僅選取一筆資料的作法可能讓樣本數過少,不但增加估計的不確定性也使其容易受到極端值影響。除此之外,年最大值數列法在抽樣過程中沒有考慮降雨事件與降雨類型,因此實際上並不符合極端值理論的假設,不應以廣義極端值分布進行配適。考量以上因素,本研究提出基於降雨事件來進行估計的事件最大值數列法作為年最大值數列法的替代。事件最大值數列法將臺灣的降雨事件分為颱風、梅雨、對流雨和鋒面雨,各類型降雨的年最大值分布可以由事件數分布與事件降雨量分布混合而成,而考慮所有事件下的年最大值降雨分布則為各類型降雨年最大值分布的混合分布 (mixture distribution)。本研究首先以蒙地卡羅模擬比較年最大值數列法和事件最大值數列法所估計的設計降雨,結果顯示事件最大值數列法在偏誤 (bias) 和均方根誤差 (Root Mean Squared Error, RMSE) 的表現上均較佳。除此之外在五堵、頭汴坑與嘉義雨量站的頻率分析中,事件最大值數列法因為使用所有降雨事件進行估計而受極端值的影響較低,也不會選取跨事件樣本而高估設計降雨。尖峰流量分析結果顯示事件最大值數列法的年最大值降雨樣本之尖峰流量將大於等於年最大值數列法的樣本之尖峰流量,因此事件最大值數列法所估計的年最大值降雨更符合設計降雨的需求。兩種方法以拔靴法 (bootstrap) 所建立的信賴區間在最後進行模擬與實際資料比較,模擬結果顯示雖然均無法達到理論覆蓋率,事件最大值數列法的信賴區間覆蓋率仍然比年最大值數列法更接近理論值,並且隨著重現期 (return period) 而變化的程度較低。 | zh_TW |
dc.description.abstract | The Annual Maximum Series (AMS) method is a conventional way of conducting rainfall frequency analysis, which plays a crucial role in hydrology engineering in terms of hydrological risk assessment. Given any design duration, the method retrieves only the maximum rainfall within a year and approximate the Annual Maximum Rainfall (AMR) distribution by the Generalized Extreme Value (GEV) distribution according to the Extremal Types Theorem. However, the GEV approximation is inappropriate since AMS is prone to have insufficient sample size and does not take storm events and storm types into account. To overcome the above problems, the Event Maximum Series (EMS) method is proposed. The EMS method classifies storm events in Taiwan into Typhoon, Meiyu, frontal rain and convective storm. The AMR distribution of a given storm type can be derived from the corresponded event occurrence distribution and event rainfall distribution, and the AMR distribution of all events is a mixture distribution of different types of AMR distribution. As a result, the EMS method provides a more suitable and effective design-rainfall than the traditional approach. The EMS method outperforms the AMS approach in many ways. In Monte Carlo simulation, the EMS method is superior to AMS method in terms of the bias and Root Mean Squared Error (RMSE). Three stations in Taiwan are selected for frequency analysis and peak flow analysis, the results show that EMS method can avoid overestimation, capture larger peak flow events and is less affected by outliers. Finally, simulation and real data analyses of confidence interval (CI) through bootstrap method are performed. Although CI of both method does not achieve the theoretical coverage rate, the coverage rate of EMS method is more stable in different return period. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T17:39:54Z (GMT). No. of bitstreams: 1 ntu-108-R06h41003-1.pdf: 4605788 bytes, checksum: 0be4f2b48e08cffd505ff0cb174fa0c5 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 目錄
誌謝 I 摘要 III Abstract V 目錄 VII 圖目錄 XI 表目錄 XIII 第一章 前言 1 1.1 研究動機與目的 1 1.2 研究架構與流程 3 第二章 文獻回顧 5 2.1 極端值理論與頻率分析 5 2.1.1 年最大值數列法 5 2.1.2 部分延時數列法 6 2.1.3 事件數列法 8 2.2 降雨事件切割與過度離散 10 2.2.1 降雨事件切割 10 2.2.2 過度離散 11 2.3不確定性分析與拔靴法 13 第三章 年最大值數列法 15 3.1 降雨頻率分析 15 3.2 年最大值降雨數列法 15 3.3 機率分布 16 3.3.1 常見分布 16 3.3.2 極端值理論與廣義極端值分布 19 3.4 參數推估 20 3.4.1 動差法 20 3.4.2 最大概似法 21 3.4.3 線性動差法 21 3.5 機率適合度檢定 24 3.5.1 機率圖 24 3.5.2 Kolmogorov-Smirnov Test 24 3.5.3 線性動差比圖 25 3.6 降雨強度─延時─頻率曲線 27 第四章 事件最大值數列法 31 4.1 年最大值與混合分布 31 4.2 事件發生次數分布 32 4.2.1 卜瓦松分布 32 4.2.2 負二項分布 32 4.3 事件最大值數列法 33 4.3.1 降雨事件切割 33 4.3.2 事件最大值數列 34 第五章 蒙地卡羅模擬 39 5.1 降雨資料生成與頻率分析模擬 39 5.2 頻率分析結果討論 40 5.3 極端值理論模擬 40 5.4 極端值模擬結果討論 41 第六章 真實資料分析 49 6.1 研究測站 49 6.2 事件切割結果 49 6.3 降雨頻率分析 49 第七章 結果與討論 65 7.1 設計降雨討論 65 7.2 尖峰流量分析 68 7.2.1 SCS三角形單位歷線 68 7.2.2 研究測站 70 7.2.3 尖峰流量比較 70 7.3 不確定性分析 71 7.3.1 拔靴法與信賴區間 71 7.3.2 年最大值數列抽樣 78 7.3.3 事件最大值數列抽樣 78 7.3.4 信賴區間模擬 78 7.3.5 真實資料設計降雨之信賴區間 79 第八章 結論 87 參考文獻 89 | |
dc.language.iso | zh-TW | |
dc.title | 事件最大值數列與混合分布在降雨頻率分析之應用 | zh_TW |
dc.title | Rainfall Frequency Analysis Using Mixture Distribution of Event-Maximum Rainfall Series | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 盧孟明,黃文政,蔡政安 | |
dc.subject.keyword | 年最大值數列,頻率分析,事件最大值數列,混合分布, | zh_TW |
dc.subject.keyword | Annual Maximum Rainfall,Event-based,Frequency analysis,Mixture distribution, | en |
dc.relation.page | 95 | |
dc.identifier.doi | 10.6342/NTU201903728 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2019-08-15 | |
dc.contributor.author-college | 共同教育中心 | zh_TW |
dc.contributor.author-dept | 統計碩士學位學程 | zh_TW |
顯示於系所單位: | 統計碩士學位學程 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf | 4.5 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。