Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71558
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor歐陽明(Ming Ouhyoung)
dc.contributor.authorMei-Yun Chenen
dc.contributor.author陳鎂鋆zh_TW
dc.date.accessioned2021-06-17T06:03:14Z-
dc.date.available2020-02-12
dc.date.copyright2019-02-12
dc.date.issued2019
dc.date.submitted2019-01-28
dc.identifier.citationBibliography
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale machine learning
on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.
[2] E. Aharoni-Mack, Y. Shambik, and D. Lischinski. Pigment-based recoloring of
watercolor paintings. In Proceedings of the Symposium on Non-Photorealistic
Animation and Rendering, page 1. ACM, 2017.
[3] W. Baxter, J. Wendt, and M. C. Lin. Impasto: a realistic, interactive model for
paint. In Proceedings of the 3rd international symposium on Non-photorealistic
animation and rendering, pages 45–148. ACM, 2004.
[4] M.-Y. Chen, C.-S. Yang, and M. Ouhyoung. A smart palette for helping novice
painters to mix physical watercolor pigments (best poster award). In E. Jain
and J. Kosinka, editors, EG 2018 - Posters. The Eurographics Association,
2018.
[5] C. J. Curtis, S. E. Anderson, J. E. Seims, K. W. Fleischer, and D. H. Salesin.
Computer-generated watercolor. In Proceedings of the 24th annual conference
on Computer graphics and interactive techniques, pages 421–430. ACM
Press/Addison-Wesley Publishing Co., 1997.
[6] H. R. Davidson and H. Hemmendinger. Color prediction using the two-constant
turbid-media theory. JOSA, 56(8):1102–1109, 1966.
[7] D. Duncan. The colour of pigment mixtures. Proceedings of the Physical
Society, 52(3):390, 1940.
[8] N. Gossett and B. Chen. Paint inspired color mixing and compositing for visualization.
In Information Visualization, 2004. INFOVIS 2004. IEEE Symposium
on, pages 113–118. IEEE, 2004.
[9] C. S. Haase and G. W. Meyer. Modeling pigmented materials for realistic image
synthesis. ACM Transactions on Graphics (TOG), 11(4):305–335, 1992.
[10] J. Itten and F. Birren. The elements of color: A treatise on the color system.
New York, 1970.
[11] P. Kubelka. New contributions to the optics of intensely light-scattering materials.
part i. JOSA, 38(5):448–448, 1948.
[12] P. Kubelka. New contributions to the optics of intensely light-scattering materials.
part ii: Nonhomogeneous layers. JOSA, 44(4):330–335, 1954.
[13] P. Kubelka and F. Munk. An article on optics of paint layers. Z. Tech. Phys,
12(593-601), 1931.
[14] J. Lu, S. DiVerdi, W. A. Chen, C. Barnes, and A. Finkelstein. Realpigment:
Paint compositing by example. In Proceedings of the Workshop on
Non-Photorealistic Animation and Rendering, pages 21–30. ACM, 2014.
[15] S. Minato. The measurement of the scattering coefficient using reference color
method. Technical Report, 19(36):203–208, 1969.
[16] M. Mohammadi and R. S. Berns. Verification of the kubelka-munk turbid media
theory for artist acrylic paint. Rochester Institute of Technology, New York,
2004.
[17] W. Mokrzycki and M. Tatol. Colour difference e a survey. MGV, 20(4):383–
411, 2011.
[18] Y. Okumura. Developing a spectral and colorimetric database of artist paint
materials. 2005.
[19] O. Photonics. Oto photonics innovation of spectra applications, 2018.
[20] B. Tober. Colorigins: Algorithmically transforming subtractive color theory
pedagogy. Skyler and Bliss Original Citation Adkins, Monty and Segretier,
Laurent (2015) Skyler and Bliss. In: xCoAx 2015: Proceedings of the Third
Conferenc on Computation, Communication, Aesthetics and X. Universidade
do Porto, Porto, page 322.
[21] S. Tominaga, S. Dozaki, Y. Kuma, K. Hirai, and T. Horiuchi. Modeling and
estimation for surface-spectral reflectance of watercolor paintings. Electronic
Imaging, 2016(9):1–6, 2016.
[22] Winsor and Netwon. The world’s finest artists’ materials and paints, 2018.
[23] S. Xu, H. Tan, X. Jiao, F. Lau, and Y. Pan. A generic pigment model for
digital painting. In Computer Graphics Forum, volume 26, pages 609–618.
Wiley Online Library, 2007.
[24] H. Yang, S. Zhu, and N. Pan. On the kubelka—munk single-constant/twoconstant
theories. Textile Research Journal, 80(3):263–270, 2010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71558-
dc.description.abstract學習混色對於新手來說是困難的。為了幫助新手畫家學習混色,我們提出一個可以預測半透明顏料混合物的模型,並且利用這個模型的預測結果去創建一個Smart Palette系統。首先,需要先建立一個用反射率與透射率表示兩種混色類別的水彩資料庫:分別是相同原色顏料混合的顏色份量增加與不同原色顏料混合的色彩混合兩類別。接下來,我們運用收集的資料,使用深度神經網路去訓練一個可預測半透明顏料混合物的模型。最後,為了讓使用者了解在真實生活中,如何使用兩個原色顏料如何混出目標色,我們創建了Smart Palette系統;當使用者從一張影像中拾取一個RGB色彩的像素,這系統會回傳它的混色配方$-$兩個原色顏料與它需要的使用份量。
半透明顏料混合物的模型預測的結果與真實混色資料的色差評估,測試集中有83%色差距離是小於5 (ΔE*ab < 5)。大於這個值域表示一個觀察者可以確定對照的色彩為兩個不同色彩。另外,在使用者研究評估報告中,首先,將使用者運用直覺、學習伊登色相環理論與使用Smart Palette配方進行混色的結果先採用色差距離公式(ΔE*ab)比較色差。接著,再使用t-test檢測這三個方法的色差距離的差異顯著性。最後,綜合色差距離與t-test的t值的結果,它可以證明使用Smart Palette配方進行混色的結果顯著地比其他兩者更接近目標色。因此,相較於傳統的混色學習方法,我們的系統(Smart Palette)的確可以有效幫助使用者學習更精準的混色。
zh_TW
dc.description.abstractLearning color mixing is difficult for novice painters. In order to support novice painters in learning color mixing, we propose a prediction model for semitransparent pigment mixtures and use its prediction results to create a Smart Palette system. Such a system is constructed by first building a watercolor dataset with two types of color mixing data, indicated by transmittance and reflectance: incrementation of the same primary pigment and a mixture of two different pigments. Next, we apply the collected data to a deep neural network to train a model for predicting the results of semitransparent pigment mixtures. Finally, we constructed a Smart Palette that provides easily-followable instructions on mixing a target color with two primary pigments in real life: when users pick a pixel, an RGB color, from an image, the system returns its mixing recipe which indicates the two primary pigments being used and their quantities.
When evaluating the pigment mixtures produced by the aforementioned model against ground truth, 83% of the test set registered a color distance of ΔE*ab < 5; ΔE*ab, above 5 is where average observers start determining that the colors in comparison as two different colors. In addition, in order to examine the effectiveness of the Smart Palette system, we design a user evaluation which untrained users perform pigment mixing with three methods: by intuition, based on Itten's color wheel, and with the Smart Palette and the results are then compiled as three color distance, ΔE*ab values. After that, the color distance of the three methods are examined by a t-test to prove whether the color differences were significant. Combining the results of color distance and the t-values of the t-test, it can demonstrate that the mixing results produced by using the Smart Palette is obviously closer to a target color than that of the others. Base on these evaluations, our system, the Smart Palette demonstrates that it can effectively help users to learn and perform better at color mixing than that of the traditional method.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:03:14Z (GMT). No. of bitstreams: 1
ntu-108-D97944005-1.pdf: 42697452 bytes, checksum: 2a16f33c92fe1aacb8eb6328275c1c47 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝i
Acknowledgements ii
摘要iv
Abstract v
1 Introduction 1
2 Related work 4
2.1 Color mixing theory of Itten’s color wheel . . . . . . . . . . . . . . . 4
2.2 Color mixing studies in computer graphics . . . . . . . . . . . . . . . 7
3 Method 9
3.1 Dataset of watercolor pigments . . . . . . . . . . . . . . . . . . . . . 9
3.1.1 Making and measuring the samples of watercolor . . . . . . . 9
3.1.2 Labeling data to construct NTU WPSM dataset . . . . . . . . 19
3.2 SWPM prediction model for color mixing using DNN . . . . . . . . . 20
4 Results 23
4.1 Using the standard threshold ΔE
ab to evaluate color difference . . . . 23
4.2 Comparison of the results of two-constant KM theory . . . . . . . . . 27
5 Applications 31
5.1 Smart Palette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 User evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2.1 Evaluation procedure . . . . . . . . . . . . . . . . . . . . . . . 35
5.2.2 Evaluation result . . . . . . . . . . . . . . . . . . . . . . . . . 36
6 Conclusion and future works 39
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Bibliography 44
dc.language.isoen
dc.subject伊登色相環zh_TW
dc.subject混色zh_TW
dc.subject顏色符合zh_TW
dc.subject光譜儀zh_TW
dc.subject深度學習zh_TW
dc.subject反射率zh_TW
dc.subject透射率zh_TW
dc.subjectdeep neural networken
dc.subjectItten’s color wheelen
dc.subjectcolor matchingen
dc.subjectreflectanceen
dc.subjecttransmittanceen
dc.subjectspectrometeren
dc.subjectcolor mixingen
dc.title使用透射率和反射率的水彩顏料數據於深度學習中預測半透明顏料混合物之模型zh_TW
dc.titlePrediction Model for Semitransparent Watercolor Pigment
Mixtures Using Deep Learning with a Dataset of Transmittance and Reflectance
en
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree博士
dc.contributor.oralexamcommittee陳文進(Wen-Chin Chen),傅楸善(Chiou-Shann Fuh),梁容輝(Rung-Huei Liang),李明穗(Ming-Sui Li)
dc.subject.keyword混色,伊登色相環,顏色符合,反射率,透射率,光譜儀,深度學習,zh_TW
dc.subject.keywordcolor mixing,Itten’s color wheel,color matching,reflectance,transmittance,spectrometer,deep neural network,en
dc.relation.page46
dc.identifier.doi10.6342/NTU201900244
dc.rights.note有償授權
dc.date.accepted2019-01-28
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊網路與多媒體研究所zh_TW
Appears in Collections:資訊網路與多媒體研究所

Files in This Item:
File SizeFormat 
ntu-108-1.pdf
  Restricted Access
41.7 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved