Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71500
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁詩同(Shih-Torng Ding)
dc.contributor.authorYu-Ju Pengen
dc.contributor.author彭裕如zh_TW
dc.date.accessioned2021-06-17T06:01:56Z-
dc.date.available2019-02-14
dc.date.copyright2019-02-14
dc.date.issued2019
dc.date.submitted2019-01-31
dc.identifier.citationAcarturk, G., Acay, A., Demir, K., Ulu, M.S., Ahsen, A., and Yuksel, S. (2015). Neutrophil-to-lymphocyte ratio in inflammatory bowel disease - As a new predictor of disease severity. Bratisl Med J 116, 213-217.
Achari, A.E., and Jain, S.K. (2017). Adiponectin, a Therapeutic Target for Obesity, Diabetes, and Endothelial Dysfunction. Int J Mol Sci 18,1321-1337.
Allgayer, H. (2003). Review article: mechanisms of action of mesalazine in preventing colorectal carcinoma in inflammatory bowel disease. Aliment Pharm Therap 18, 10-14.
Almer, G., Saba-Lepek, M., Haj-Yahya, S., Rohde, E., Strunk, D., Frohlich, E., Prassl, R., and Mangge, H. (2011). Globular domain of adiponectin: promising target molecule for detection of atherosclerotic lesions. Biologics 5, 95-105.
Arsenescu, V., Narasimhan, M.L., Halide, T., Bressan, R.A., Barisione, C., Cohen, D.A., de Villiers, W.J., and Arsenescu, R. (2011). Adiponectin and plant-derived mammalian adiponectin homolog exert a protective effect in murine colitis. Dig Dis Sci 56, 2818-2832.
Baumgart, D.C., and Sandborn, W.J. (2012). Crohn's disease. Lancet 380, 1590-1605.
Berner, H.S., Lyngstadaas, S.P., Spahr, A., Monjo, M., Thommesen, L., Drevon, C.A., Syversen, U., and Reseland, J.E. (2004). Adiponectin and its receptors are expressed in bone-forming cells. Bone 35, 842-849.
Betteridge, J.D., Armbruster, S.P., Maydonovitch, C., and Veerappan, G.R. (2013). Inflammatory bowel disease prevalence by age, gender, race, and geographic location in the U.S. military health care population. Inflamm Bowel Dis 19, 1421-1427.
Borregaard, N., and Cowland, J.B. (1997). Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89, 3503-3521.
Bottardi, S., Mavoungou, L., Bourgoin, V., Mashtalir, N., Affar el, B., and Milot, E. (2013). Direct Protein Interactions Are Responsible for Ikaros-GATA and Ikaros-Cdk9 Cooperativeness in Hematopoietic Cells. Mol Cell Biol 33, 3064-3076.
Brannigan, A.E., O'Connell, P.R., Hurley, H., O'Neill, A., Brady, H.R., Fitzpatrick, J.M., and Watson, R.W.G. (2000). Neutrophil apoptosis is delayed in patients with inflammatory bowel disease. Shock 13, 361-366.
Bressenot, A., Salleron, J., Bastien, C., Danese, S., Boulagnon-Rombi, C., and Peyrin-Biroulet, L. (2015). Comparing histological activity indexes in UC. Gut 64, 1412-1418.
Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D.S., Weinrauch, Y., and Zychlinsky, A. (2004). Neutrophil extracellular traps kill bacteria. Science 303, 1532-1535.
Cai, L., Xu, S., Piao, C., Qiu, S., Li, H., and Du, J. (2016). Adiponectin induces CXCL1 secretion from cancer cells and promotes tumor angiogenesis by inducing stromal fibroblast senescence. Mol Carcinog 55, 1796-1806.
Caminos, J.E., Nogueiras, R., Gallego, R., Bravo, S., Tovar, S., Garcia-Caballero, T., Casanueva, F.F., and Dieguez, C. (2005). Expression and regulation of adiponectin and receptor in human and rat placenta. J Clin Endocrinol Metab 90, 4276-4286.
Campbell, E.L., Bruyninckx, W.J., Kelly, C.J., Glover, L.E., McNamee, E.N., Bowers, B.E., Bayless, A.J., Scully, M., Saeedi, B.J., Golden-Mason, L., et al. (2014). Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. Immunity 40, 66-77.
Castano-Milla, C., Chaparro, M., and Gisbert, J.P. (2014). Systematic review with meta-analysis: the declining risk of colorectal cancer in ulcerative colitis. Aliment Pharmacol Ther 39, 645-659.
Chandrasekar, B., Patel, D.N., Mummidi, S., Kim, J.W., Clark, R.A., and Valente, A.J. (2008). Interleukin-18 suppresses adiponectin expression in 3T3-L1 adipocytes via a novel signal transduction pathway involving ERK1/2-dependent NFATc4 phosphorylation. J Biol Chem 283, 4200-4209.
Chen, X., Lu, J., Bao, J., Guo, J., Shi, J., and Wang, Y. (2013). Adiponectin: a biomarker for rheumatoid arthritis? Cytokine Growth Factor Rev 24, 83-89.
Chou, I.P., Chiu, Y.P., Ding, S.T., Liu, B.H., Lin, Y.Y., and Chen, C.Y. (2014). Adiponectin receptor 1 overexpression reduces lipid accumulation and hypertrophy in the heart of diet-induced obese mice--possible involvement of oxidative stress and autophagy. Endocr Res 39, 173-179.
Chouliaras, G., Panayotou, I., Margoni, D., Mantzou, E., Pervanidou, P., Manios, Y., Chrousos, G.P., and Roma, E. (2013). Circulating leptin and adiponectin and their relation to glucose metabolism in children with Crohn's disease and ulcerative colitis. Pediatr Res 74, 420-426.
Colgan, S.P., Serhan, C.N., Parkos, C.A., Delp-Archer, C., and Madara, J.L. (1993). Lipoxin A4 modulates transmigration of human neutrophils across intestinal epithelial monolayers. J Clin Invest 92, 75-82.
Colombel, J.F., Sandborn, W.J., and Rutgeerts, P. (2010). Infliximab, Azathioprine, or Combination Therapy for Crohn's Disease REPLY. New Engl J Med 363, 1087-1088.
Corridoni, D., Arseneau, K.O., and Cominelli, F. (2014). Inflammatory bowel disease. Immunol Lett 161, 231-235.
Danese, S., and Fiocchi, C. (2011). Medical progress ulcerative colitis. New Engl J Med 365, 1713-1725.
Delaigle, A.M., Jonas, J.C., Bauche, I.B., Cornu, O., and Brichard, S.M. (2004). Induction of adiponectin in skeletal muscle by inflammatory cytokines: in vivo and in vitro studies. Endocrinology 145, 5589-5597.
Deshmukh, H.S., Liu, Y., Menkiti, O.R., Mei, J., Dai, N., O'Leary, C.E., Oliver, P.M., Kolls, J.K., Weiser, J.N., and Worthen, G.S. (2014). The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nat Med 20, 524-530.
Ding, S.T., Liu, B.H., and Ko, Y.H. (2004). Cloning and expression of porcine adiponectin and adiponectin receptor 1 and 2 genes in pigs. J Anim Sci 82, 3162-3174.
Eaden, J.A., Abrams, K.R., and Mayberry, J.F. (2001). The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut 48, 526-535.
El Kebir, D., and Filep, J.G. (2013). Targeting neutrophil apoptosis for enhancing the resolution of inflammation. Cell 2, 330-348.
Fantuzzi, G. (2008). Adiponectin and inflammation: consensus and controversy. The J Allergy Clin Immunol 121, 326-330.
Fasshauer, M., Kralisch, S., Klier, M., Lossner, U., Bluher, M., Klein, J., and Paschke, R. (2003). Adiponectin gene expression and secretion is inhibited by interleukin-6 in 3T3-L1 adipocytes. Biochem Biophys Res Commun 301, 1045-1050.
Fayad, R., Pini, M., Sennello, J.A., Cabay, R.J., Chan, L., Xu, A., and Fantuzzi, G. (2007). Adiponectin deficiency protects mice from chemically induced colonic inflammation. Gastroenterology 132, 601-614.
Fisman, E.Z., and Tenenbaum, A. (2014). Adiponectin: a manifold therapeutic target for metabolic syndrome, diabetes, and coronary disease? Cardiovascular diabetolo 13, 103.
Fournier, B.M., and Parkos, C.A. (2012). The role of neutrophils during intestinal inflammation. Mucosal Immunol 5, 354-366.
Furze, R.C., and Rankin, S.M. (2008). Neutrophil mobilization and clearance in the bone marrow. Immunology 125, 281-288.
Ghione, S., Sarter, H., Fumery, M., Armengol-Debeir, L., Savoye, G., Ley, D., Spyckerelle, C., Pariente, B., Peyrin-Biroulet, L., Turck, D., et al. (2017). Dramatic Increase in Incidence of Ulcerative Colitis and Crohn's Disease (1988-2011): A Population-Based Study of French Adolescents. Am J Gastroenterol.
Ghosh, S., and Palmer, T. (2003). Natalizumab for active Crohn's disease - Reply. New Engl J Med 348, 1599-1599.
Gustafson, B., Jack, M.M., Cushman, S.W., and Smith, U. (2003). Adiponectin gene activation by thiazolidinediones requires PPAR gamma 2, but not C/EBP alpha-evidence for differential regulation of the aP2 and adiponectin genes. Biochem Biophys Res Commun 308, 933-939.
Hall, C.H.T., Campbell, E.L., and Colgan, S.P. (2017). Neutrophils as Components of Mucosal Homeostasis. Cell Mol Gastroenter 4, 329-337.
Hammond, M.E., Lapointe, G.R., Feucht, P.H., Hilt, S., Gallegos, C.A., Gordon, C.A., Giedlin, M.A., Mullenbach, G., and Tekamp-Olson, P. (1995). IL-8 induces neutrophil chemotaxis predominantly via type I IL-8 receptors. J Immunol 155, 1428-1433.
Hampe, L., Radjainia, M., Xu, C., Harris, P.W., Bashiri, G., Goldstone, D.C., Brimble, M.A., Wang, Y., and Mitra, A.K. (2015). Regulation and quality control of adiponectin assembly by endoplasmic reticulum chaperone ERp44. J Biol Chem 290, 18111-18123.
Harbord, M.W.N., Marks, D.J.B., Forbes, A., Bloom, S.L., Day, R.M., and Segal, A.W. (2006). Impaired neutrophil chemotaxis in Crohn's disease relates to reduced production of chemokines and can be augmented by granulocyte-colony stimulating factor. Aliment Pharm Ther 24, 651-660.
He, W., Barak, Y., Hevener, A., Olson, P., Liao, D., Le, J., Nelson, M., Ong, E., Olefsky, J.M., and Evans, R.M. (2003). Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proc Natl Acad Sci U S A 100, 15712-15717.
Huypens, P., Moens, K., Heimberg, H., Ling, Z., Pipeleers, D., and Van de Casteele, M. (2005). Adiponectin-mediated stimulation of AMP-activated protein kinase (AMPK) in pancreatic beta cells. Life Sci 77, 1273-1282.
Ikeda, A., Nakagawa, T., Kawai, K., Onozawa, M., Hayashi, T., Matsushita, Y., Tsutsumi, M., Kojima, T., Miyazaki, J., and Nishiyama, H. (2015). Serum adiponectin concentration in 2,939 Japanese men undergoing screening for prostate cancer. Prostate Int 3, 87-92.
Ina, K., Kusugami, K., Hosokawa, T., Imada, A., Shimizu, T., Yamaguchi, T., Ohsuga, M., Kyokane, K., Sakai, T., Nishio, Y., et al. (1999). Increased mucosal production of granulocyte colony-stimulating factor is related to a delay in neutrophil apoptosis in inflammatory bowel disease. J Gastroenterol Hepatol 14, 46-53.
Izzo, R.S., Witkon, K., Chen, A.I., Hadjiyane, C., Weinstein, M.I., and Pellecchia, C. (1993). Neutrophil-activating peptide (interleukin-8) in colonic mucosa from patients with Crohn's disease. Scand J Gastroenterol 28, 296-300.
Jess, T., Rungoe, C., and Peyrin-Biroulet, L. (2012). Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies. Clin Gastroenterol Hepatol 10, 639-645.
Kaplan, G.G. (2015). The global burden of IBD: from 2015 to 2025. Nat Rev Gastroenterol Hepatol 12, 720-727.
Kappelman, M.D., Rifas-Shiman, S.L., Kleinman, K., Ollendorf, D., Bousvaros, A., Grand, R.J., and Finkelstein, J.A. (2007). The prevalence and geographic distribution of Crohn's disease and ulcerative colitis in the United States. Clin Gastroenterol Hepatol 5, 1424-1429.
Karmiris, K., Koutroubakis, I.E., Xidakis, C., Polychronaki, M., Voudouri, T., and Kouroumalis, E.A. (2006). Circulating levels of leptin, adiponectin, resistin, and ghrelin in inflammatory bowel disease. Inflamm Bowel Dis 12, 100-105.
Kaur, K., Saxena, A., Larsen, B., Truman, S., Biyani, N., Fletcher, E., Baliga, M.S., Ponemone, V., Hegde, S., Chanda, A., et al. (2015). Mucus mediated protection against acute colitis in adiponectin deficient mice. J Inflammation 12, 35-43.
Kirsner, J.B. (2001). Historical origins of current IBD concepts. World J Gastroenterol 7, 175-184.
Kita, A., Yamasaki, H., Kuwahara, H., Moriuchi, A., Fukushima, K., Kobayashi, M., Fukushima, T., Takahashi, R., Abiru, N., Uotani, S., et al. (2005). Identification of the promoter region required for human adiponectin gene transcription: Association with CCAAT/enhancer binding protein-beta and tumor necrosis factor-alpha. Biochem Biophys Res Commun 331, 484-490.
Kitahara, K., Kusunoki, N., Kakiuchi, T., Suguro, T., and Kawai, S. (2009). Adiponectin stimulates IL-8 production by rheumatoid synovial fibroblasts. Biochem Biophys Res Commun 378, 218-223.
Kobayashi, S.D., and DeLeo, F.R. (2009). Role of neutrophils in innate immunity: a systems biology-level approach. Wiley Interdiscip Rev Syst Biol Med 1, 309-333.
Kolaczkowska, E., and Kubes, P. (2013). Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13, 159-175.
Kusunoki, N., Kitahara, K., Kojima, F., Tanaka, N., Kaneko, K., Endo, H., Suguro, T., and Kawai, S. (2010). Adiponectin stimulates prostaglandin E(2) production in rheumatoid arthritis synovial fibroblasts. Arthritis and Rheum 62, 1641-1649.
Lacy, P. (2006). Mechanisms of degranulation in neutrophils. Allergy Asthma Clin Immunol 2, 98-108.
Lin, Y.Y., Chen, C.Y., Lin, Y., Chiu, Y.P., Chen, C.C., Liu, B.H., Mersmann, H.J., Wu, S.C., and Ding, S.T. (2013). Modulation of glucose and lipid metabolism by porcine adiponectin receptor 1-transgenic mesenchymal stromal cells in diet-induced obese mice. Cytotherapy 15, 971-978.
Liu, B.H., Lin, Y.Y., Wang, Y.C., Huang, C.W., Chen, C.C., Wu, S.C., Mersmann, H.J., Cheng, W.T.K., and Ding, S.T. (2013). Porcine Adiponectin Receptor 1 Transgene Resists High-fat/Sucrose Diet-Induced Weight Gain, Hepatosteatosis and Insulin Resistance in Mice. Exp Anim Tokyo 62, 347-360.
Liu, M.L., and Liu, F. (2010). Transcriptional and post-translational regulation of adiponectin. Biochem J 425, 41-52.
Loftus, E.V., Jr. (2004a). Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology 126, 1504-1517.
Loftus, E.V., Jr. (2004b). Hunting for the owl's eye in acute severe colitis: the role of cytomegalovirus. Dig Liver Dis 36, 803-805.
M'Koma, A.E. (2013). Inflammatory bowel disease: an expanding global health problem. Clin Med Insights Gastroenterol 6, 33-47.
Mahida, Y.R., Ceska, M., Effenberger, F., Kurlak, L., Lindley, I., and Hawkey, C.J. (1992). Enhanced synthesis of neutrophil-activating peptide-1/interleukin-8 in active ulcerative colitis. Clin Sci 82, 273-275.
Mao, X., Kikani, C.K., Riojas, R.A., Langlais, P., Wang, L., Ramos, F.J., Fang, Q., Christ-Roberts, C.Y., Hong, J.Y., Kim, R.Y., et al. (2006). APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat Cell Biol 8, 516-523.
Mazzucchelli, L., Hauser, C., Zgraggen, K., Wagner, H., Hess, M., Laissue, J.A., and Mueller, C. (1994). Expression of interleukin-8 gene in inflammatory bowel disease is related to the histological grade of active inflammation. Am J Pathol 144, 997-1007.
Mitsuyama, K., Toyonaga, A., Sasaki, E., Watanabe, K., Tateishi, H., Nishiyama, T., Saiki, T., Ikeda, H., Tsuruta, O., and Tanikawa, K. (1994). IL-8 as an important chemoattractant for neutrophils in ulcerative colitis and Crohn's disease. Clin Exp Immunol 96, 432-436.
Molodecky, N.A., Soon, I.S., Rabi, D.M., Ghali, W.A., Ferris, M., Chernoff, G., Benchimol, E.I., Panaccione, R., Ghosh, S., Barkema, H.W., et al. (2012). Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142, 46-54.
Morteau, O., Morham, S.G., Sellon, R., Dieleman, L.A., Langenbach, R., Smithies, O., and Sartor, R.B. (2000). Impaired mucosal defense to acute colonic injury in mice lacking cyclooxygenase-1 or cyclooxygenase-2. Journal Clin Invest 105, 469-478.
Muthas, D., Reznichenko, A., Balendran, C.A., Bottcher, G., Clausen, I.G., Karrman Mardh, C., Ottosson, T., Uddin, M., MacDonald, T.T., Danese, S., et al. (2017). Neutrophils in ulcerative colitis: a review of selected biomarkers and their potential therapeutic implications. Scand J Gastroenterol 52, 125-135.
Nakae, J., Cao, Y., Oki, M., Orba, Y., Sawa, H., Kiyonari, H., Iskandar, K., Suga, K., Lombes, M., and Hayashi, Y. (2008). Forkhead transcription factor FoxO1 in adipose tissue regulates energy storage and expenditure. Diabetes 57, 563-576.
Nakae, J., Kitamura, T., Kitamura, Y., Biggs, W.H., 3rd, Arden, K.C., and Accili, D. (2003). The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev Cell 4, 119-129.
Natsui, M., Kawasaki, K., Takizawa, H., Hayashi, S.I., Matsuda, Y., Sugimura, K., Seki, K., Narisawa, R., Sendo, F., and Asakura, H. (1997). Selective depletion of neutrophils by a monoclonal antibody, RP-3, suppresses dextran sulphate sodium-induced colitis in rats. J Gastroenterol Hepatol 12, 801-808.
Neurath, M. (2017). Current and emerging therapeutic targets for IBD. Nat Rev Gastro Hepat 14, 688-688.
Nishihara, T., Matsuda, M., Araki, H., Oshima, K., Kihara, S., Funahashi, T., and Shimomura, I. (2006). Effect of adiponectin on murine colitis induced by dextran sulfate sodium. Gastroenterology 131, 853-861.
Obeid, S., Wankell, M., Charrez, B., Sternberg, J., Kreuter, R., Esmaili, S., Ramezani-Moghadam, M., Devine, C., Read, S., Bhathal, P., et al. (2017). Adiponectin confers protection from acute colitis and restricts a B cell immune response. J Biol Chem 292, 6569-6582.
Palmen, M.J., Dijkstra, C.D., van der Ende, M.B., Pena, A.S., and van Rees, E.P. (1995). Anti-CD11b/CD18 antibodies reduce inflammation in acute colitis in rats. Clin Exp Immunol 101, 351-356.
Park, B.H., Qiang, L., and Farmer, S.R. (2004). Phosphorylation of C/EBPbeta at a consensus extracellular signal-regulated kinase/glycogen synthase kinase 3 site is required for the induction of adiponectin gene expression during the differentiation of mouse fibroblasts into adipocytes. Mol Cell Biol 24, 8671-8680.
Patel, J.V., Abraheem, A., Dotsenko, O., Creamer, J., Gunning, M., Hughes, E.A., and Lip, G.Y. (2008). Circulating serum adiponectin levels in patients with coronary artery disease: relationship to atherosclerotic burden and cardiac function. J Intern Med 264, 593-598.
Peters-Golden, M., and Henderson, W.R., Jr. (2007). Leukotrienes. N Engl J Med 357, 1841-1854.
Podolsky, D.K. (1991). Inflammatory bowel disease. N Engl J Med 325, 1008-1016.
Podolsky, D.K. (2002). The current future understanding of inflammatory bowel disease. Best Pract Res Clin Gastroenterol 16, 933-943.
Puleston, J., Cooper, M., Murch, S., Bid, K., Makh, S., Ashwood, P., Bingham, A.H., Green, H., Moss, P., Dhillon, A., et al. (2005). A distinct subset of chemokines dominates the mucosal chemokine response in inflammatory bowel disease. Aliment Pharmacol Ther 21, 109-120.
Qi, L., Saberi, M., Zmuda, E., Wang, Y., Altarejos, J., Zhang, X., Dentin, R., Hedrick, S., Bandyopadhyay, G., Hai, T., et al. (2009). Adipocyte CREB promotes insulin resistance in obesity. Cell Metab 9, 277-286.
Raab, Y., Gerdin, B., Ahlstedt, S., and Hallgren, R. (1993). Neutrophil mucosal involvement is accompanied by enhanced local production of interleukin-8 in ulcerative colitis. Gut 34, 1203-1206.
Ricciotti, E., and FitzGerald, G.A. (2011). Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 31, 986-1000.
Rodrigues, V.S., Milanski, M., Fagundes, J.J., Torsoni, A.S., Ayrizono, M.L., Nunez, C.E., Dias, C.B., Meirelles, L.R., Dalal, S., Coy, C.S., et al. (2012). Serum levels and mesenteric fat tissue expression of adiponectin and leptin in patients with Crohn's disease. Clin Exp Immunol 170, 358-364.
Ruan, H., and Dong, L.Q. (2016). Adiponectin signaling and function in insulin target tissues. J Mol Cell Biol 8, 101-109.
Saniabadi, A.R., Tanaka, T., Ohmori, T., Sawada, K., Yamamoto, T., and Hanai, H. (2014). Treating inflammatory bowel disease by adsorptive leucocytapheresis: a desire to treat without drugs. World J Gastroenterol 20, 9699-9715.
Saxena, A., Chumanevich, A., Fletcher, E., Larsen, B., Lattwein, K., Kaur, K., and Fayad, R. (2012). Adiponectin deficiency: role in chronic inflammation induced colon cancer. Biochim Biophys Acta 1822, 527-536.
Schwab, J.M., Chiang, N., Arita, M., and Serhan, C.N. (2007). Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 447, 869-874.
Sideri, A., Stavrakis, D., Bowe, C., Shih, D.Q., Fleshner, P., Arsenescu, V., Arsenescu, R., Turner, J.R., Pothoulakis, C., and Karagiannides, I. (2015). Effects of obesity on severity of colitis and cytokine expression in mouse mesenteric fat. Potential role of adiponectin receptor 1. Am J Physiol Gastrointest Liver Physiol 308, G591-604.
Singer, II, Kawka, D.W., Schloemann, S., Tessner, T., Riehl, T., and Stenson, W.F. (1998). Cyclooxygenase 2 is induced in colonic epithelial cells in inflammatory bowel disease. Gastroenterology 115, 297-306.
Stetler-Stevenson, W.G. (1999). Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest 103, 1237-1241.
Sturm, E.M., Radnai, B., Jandl, K., Stancic, A., Parzmair, G.P., Hogenauer, C., Kump, P., Wenzl, H., Petritsch, W., Pieber, T.R., et al. (2014). Opposing roles of prostaglandin D2 receptors in ulcerative colitis. J Immunol 193, 827-839.
Summers, C., Rankin, S.M., Condliffe, A.M., Singh, N., Peters, A.M., and Chilvers, E.R. (2010). Neutrophil kinetics in health and disease. Trends Immunol 31, 318-324.
Tanabe, H., Fujii, Y., Okada-Iwabu, M., Iwabu, M., Nakamura, Y., Hosaka, T., Motoyama, K., Ikeda, M., Wakiyama, M., Terada, T., et al. (2015). Crystal structures of the human adiponectin receptors. Nature 520, 312-316.
Targan, S.R., Feagan, B.G., Fedorak, R.N., Lashner, B.A., Panaccione, R., Present, D.H., Spehlmann, M.E., Rutgeerts, P.J., Tulassay, Z., Volfova, M., et al. (2007). Natalizumab for the treatment of active Crohn's disease: results of the Encore Trial. Gastroenterology 132, 1672-1683.
Thieme, F., Janousek, L., Fronek, J., Kralova, A., Cejkova, S., Kralova Lesna, I., and Poledne, R. (2015). The effect of ectopic fat on graft function after living kidney transplantation. Physiol Res 64 Suppl 3, S411-417.
Tschritter, O., Fritsche, A., Thamer, C., Haap, M., Shirkavand, F., Rahe, S., Staiger, H., Maerker, E., Haring, H., and Stumvoll, M. (2003). Plasma adiponectin concentrations predict insulin sensitivity of both glucose and lipid metabolism. Diabetes 52, 239-243.
Waki, H., Yamauchi, T., Kamon, J., Kita, S., Ito, Y., Hada, Y., Uchida, S., Tsuchida, A., Takekawa, S., and Kadowaki, T. (2005). Generation of globular fragment of adiponectin by leukocyte elastase secreted by monocytic cell line THP-1. Endocrinology 146, 790-796.
Waluga, M., Hartleb, M., Boryczka, G., Kukla, M., and Zwirska-Korczala, K. (2014). Serum adipokines in inflammatory bowel disease. World J Gastroenterol 20, 6912-6917.
Wang, C.H., Xin, X.B., Xiang, R.H., Ramos, F.J., Liu, M.L., Lee, H.J., Chen, H.Z., Mao, X.M., Kikani, C.K., Liu, F., et al. (2009). Yin-Yang Regulation of Adiponectin Signaling by APPL Isoforms in Muscle Cells. J Bio Chem 284, 31608-31615.
Wang, Z.V., Schraw, T.D., Kim, J.Y., Khan, T., Rajala, M.W., Follenzi, A., and Scherer, P.E. (2007). Secretion of the adipocyte-specific secretory protein adiponectin critically depends on thiol-mediated protein retention. Mol Cell Biol 27, 3716-3731.
Wanninger, J., Neumeier, M., Weigert, J., Bauer, S., Weiss, T.S., Schaffler, A., Krempl, C., Bleyl, C., Aslanidis, C., Scholmerich, J., et al. (2009). Adiponectin-stimulated CXCL8 release in primary human hepatocytes is regulated by ERK1/ERK2, p38 MAPK, NF-kappaB, and STAT3 signaling pathways. Am J Physiol Gastrointest Liver Physiol 297, G611-618.
Weigert, J., Obermeier, F., Neumeier, M., Wanninger, J., Filarsky, M., Bauer, S., Aslanidis, C., Rogler, G., Ott, C., Schaffler, A., et al. (2010). Circulating levels of chemerin and adiponectin are higher in ulcerative colitis and chemerin is elevated in Crohn's disease. Inflamm Bowel Dis 16, 630-637.
Wera, O., Lancellotti, P., and Oury, C. (2016). The Dual Role of Neutrophils in Inflammatory Bowel Diseases. J Clin Med 5, 118-141.
Xu, X., Jackson, P.L., Tanner, S., Hardison, M.T., Roda, M.A., Blalock, J.E., and Gaggar, A. (2011). A self-propagating matrix metalloprotease-9 (MMP-9) dependent cycle of chronic neutrophilic inflammation. PLos One 6, 15781-15793.
Yamamoto, K., Kiyohara, T., Murayama, Y., Kihara, S., Okamoto, Y., Funahashi, T., Ito, T., Nezu, R., Tsutsui, S., Miyagawa, J.I., et al. (2005). Production of adiponectin, an anti-inflammatory protein, in mesenteric adipose tissue in Crohn's disease. Gut 54, 789-796.
Yamauchi, T., Kamon, J., Ito, Y., Tsuchida, A., Yokomizo, T., Kita, S., Sugiyama, T., Miyagishi, M., Hara, K., Tsunoda, M., et al. (2003). Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762-769.
Yoda-Murakami, M., Taniguchi, M., Takahashi, K., Kawamata, S., Saito, K., Choi-Miura, N.H., and Tomita, M. (2001). Change in expression of GBP28/adiponectin in carbon tetrachloride-administrated mouse liver. Biochem Biophys Res Commun 285, 372-377.
Zhang, B., Berger, J., Hu, E.I., Szalkowski, D., WhiteCarrington, S., Spiegelman, B.M., and Moller, D.E. (1996). Negative regulation of peroxisome proliferator-activated receptor-gamma gene expression contributes to the antiadipogenic effects of tumor necrosis factor-alpha. Mol Endocrinol 10, 1457-1466.
Zhang, R., Ito, S., Nishio, N., Cheng, Z., Suzuki, H., and Isobe, K. (2011). Up-regulation of Gr1+CD11b+ population in spleen of dextran sulfate sodium administered mice works to repair colitis. Inflamm Allergy Drug Targets 10, 39-46.
Zhou, G.X., and Liu, Z. (2017). Potential roles of neutrophils in regulating intestinal mucosal inflammation of inflammatory bowel disease. J Dig Di 18,495-503.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71500-
dc.description.abstract脂肪細胞最為人熟知的功能為透過三酸甘油脂的合成和分解來調控能量平衡,近年來的研究亦發現脂肪細胞具有內分泌功能,產生脂肪激素調節不同的生理功能。脂聯素是種脂肪細胞激素,有調控生物體能量平衡和抗發炎的功用。然而,脂聯素和其接受體在腸道發炎扮演的角色卻是有爭議之處,且對嗜中性免疫細胞的影響仍是未知。故本次研究希望釐清脂聯素一型接受體對腸炎和嗜中性免疫細胞的影響。首先以化學藥劑葡聚糖硫酸引起脂聯素一型接受體轉殖基因小鼠產生急性腸炎,並以脂聯素重組蛋白處理腸道上皮細胞株和巨噬細胞株。實驗結果顯示,脂聯素一型接受體轉殖基因小鼠會罹患較嚴重的急性腸炎,且脂聯素重組蛋白會促進腸道上皮細胞和巨噬細胞表現發炎因子。在無誘導急性腸炎的轉殖基因小鼠腸道有較高量的發炎因子環氧合酶2和嗜中性免疫細胞驅化因子 (neutrophil chemokines, CXCL1,CXCL2和CXCL5)表現,且腸道有較多的嗜中性免疫細胞浸潤。本研究結果顯示脂聯素和其一型接受體可能會藉由兩種方式惡化腸道發炎: 1. 脂聯素和其一型接受體訊號會促進發炎因子的表現。2. 脂聯素一型接受體增加嗜中性免疫細胞驅化因子,造成腸道過量的嗜中性免疫細胞浸潤,過度活化的免疫反應造成嚴重的腸道發炎。zh_TW
dc.description.abstractAdiponectin (ADN) is an adipokine mainly derived from adipose tissue. It binds to adiponectin receptor 1 and 2 (AdipoR1 and R2) to exert its function in regulating whole-body energy homeostasis and inflammatory responses. However, the role of ADN-AdipoR1 signaling in intestinal inflammation is controversial, and its role in the regulation of neutrophils is still unclear. Our goal was to clarify the role of AdipoR1 signaling in colitis and the effects on neutrophils.
We generated porcine AdipoR1 transgenic mice (pAdipoR1 mice) and induced murine colitis using dextran sulfate sodium (DSS) to study the potential role of AdipoR1 in inflammatory bowel disease. THP-1 macrophage and HT-29 colon epithelial cells were treated with ADN recombinant protein to study the effects of ADN expression on inflammation.
After inducing murine colitis, pAdipoR1 mice developed more severe pathogenesis than wild-type (WT) mice. Treatment with ADN increased the expression of pro-inflammatory factors in THP-1 and HT-29 cells in association with the increased expression of cyclooxygenase2 (cox2), neutrophil chemokines (CXCL1, CXCL2 and CXCL5), and the infiltration of neutrophils were increased in the colon of pAdipoR1 mice.
Current study showed that AdipoR1 signaling exacerbated colonic inflammation through two possible mechanisms. First, ADN-AdipoR1 signaling increased pro-inflammatory factors. Second, AdipoR1 enhanced neutrophil chemokine expression and neutrophils infiltration into the colonic tissue to increase inflammation.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:01:56Z (GMT). No. of bitstreams: 1
ntu-108-D98626001-1.pdf: 3252214 bytes, checksum: 3641dd1ca81927159c04b7c1e9a62ffd (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目錄
序言 ................................................................I
中文摘要 ...........................................................II
Abstract ............................................................III
Chapter 1. Literature review .......................................................................................1
1.1 Adiponectin ....................................................................................................1
1.1.1 Adiponectin .........................................................................................1
1.1.2 Transcriptional Regulation of Adiponectin ..........................................1
1.1.3 Regulation of Adiponectin Multimerization and Secretion ..................2
1.1.4 The Activation of Adiponectin ..............................................................3
1.2 Inflammatory Bowel Disease (IBD) ...............................................................4
1.2.1 Inflammatory Bowel Disease (IBD) ......................................................4
1.2.2 Current Therapies for Inflammatory Bowel Disease .............................5
1.2.3 Neutrophils and Mucosal Immunity .......................................................6
1.2.4 Neutrophils and Inflammatory Bowel Disease .......................................8
Chapter 2. Adiponectin and adiponectin receptor 1 overexpression enhances inflammatory bowel disease ....................................................................................12
2.1 Introduction ........................................................................................................12
2.2 Materials and Methods .......................................................................................17
2.2.1 Experimental animals..............................................................................17
2.2.2 Survival study .........................................................................................17
2.2.3 Establishment of acute colitis .................................................................17
2.2.4 Histologic analysis ..................................................................................18
2.2.5 Protein extraction and Western blotting analysis ....................................18
2.2.6 Protein co-immunoprecipitation .............................................................19
2.2.7 Colon tissue culture and enzyme-linked immunosorbent assay .............20
2.2.8 Cell culture .............................................................................................20
2.2.9 Adiponectin recombinant protein treatment ...........................................21
2.2.10 RNA extraction, cDNA synthesis and reverse transcription-quantitative polymerase chain reaction (qPCR) .........................................................21
2.2.11 Immunohistochemistry quantification ....................................................22
2.2.12 Statistical analysis ...................................................................................22
2.3 Results ................................................................................................................23
2.3.1 The expression of adiponectin and adiponectin receptor 1 ....................23
2.3.2 DSS-induced colitis ................................................................................23
2.3.3 Macrophage infiltration ..........................................................................24
2.3.4 IL-6 and TNF-α in mouse serum and colonic tissue culture medium ....24
2.3.5 Adiponectin in mouse serum ..................................................................25
2.3.6 The effect of adiponectin on the cyclooxygenase/prostaglandin E2 pathway ...................................................................................................25
2.3.7 Adiponectin enhanced the expression of IL-8 ........................................26
2.3.8 The effect of adiponectin on pro-inflammatory cytokines .....................26
2.3.9 Adiponectin receptor 1 enhanced the expression of neutrophil chemokines, cox2 and elastase in mice colon tissue ..............................26
2.4 Discussion ...........................................................................................................28
2.5 Conclusions ........................................................................................................32
References ......................................................................................................................51
Appendix
Docosahexaenoic acid suppresses pro-inflammatory macrophages and promotes anti-inflammatory/ regulatory macrophage polarization through regulation of cytokines .........................................................................................................................69
A.1 Abstract ....................................................................................................................69
A.2 Introduction ..............................................................................................................70
A.3 Materials and Methods .............................................................................................72
A.3.1 Cell culture ....................................................................................................72
A.3.2 DHA treatment and macrophage differentiation ...........................................72
A.3.3 RNA extraction and reverse transcription-quantitative polymerase chain reaction (qRT-PCR) ......................................................................................73
A.3.4 Experimental Animals and DHA administration ..........................................73
A.3.5 Flow cytometry .............................................................................................74
A.3.6 Enzyme-linked immunosorbent assay (ELISA) ...........................................75
A.3.7 Statistical analysis .........................................................................................75
A.4 Results ......................................................................................................................76
A.4.1 Pre-treatment with DHA reduced the expression of M1 markers in THP-1 cells ......................................................................................................................76
A.4.2 Pre-treatment with DHA increased the expression of M2 and Mreg markers in THP-cells ...............................................................................................................76
A.4.3 DHA decreased M1 and increased M2-like macrophages in mice .................77
A.4.4 DHA decreased M1-stimulating cytokines and increased M2/Mreg- stimulating cytokines in mice .........................................................................77
A.5 Discussion ................................................................................................................78
Appendix references .......................................................................................................89
List of Tables
Table1-1 Dual roles of neutrophils ..................................................................................10
Table 2-1 Primer sets for quantitative real-time PCR .......................................................33
Table A1 Primers sets for quantitative real-time PCR ....................................................82
List of Figures
Figure 1-1 Domains and structure of adiponectin ............................................................11
Figure 2-1 Sequence alignment of human, pig and mouse AdipoR1 ................................34
Figure 2-2. Mouse ADN recombinant protein induced the phosphorylation of AMPK in porcine adipocyte ........................................................................................................35
Figure 2-3 Mouse ADN bound to porcine AdipoR1 in pAdipoR1 mice ...........................36
Figure 2-4 Experimental design ......................................................................................37
Figure 2-5 The expression of adiponectin and adiponectin receptor 1 in wild type (WT)
and porcine adiponectin receptor 1 transgenic mice (pAdipoR1) ................................38
Figure 2-6 The responses of wild type mice (WT) and porcine adiponectin receptor 1 transgenic mice (pAdipoR1) to DSS-induced colitis .................................................40
Figure 2-7 The expression of pro-inflammatory cytokines in serum and colon of wild type mice (WT) and porcine adiponectin receptor 1 transgenic mice (pAdipoR1) .................................................................................................................42
Figure 2-8 The expression of adiponectin in serum of wild type mice (WT) and porcine adiponectin receptor 1 transgenic mice (pAdipoR1) ......................................................44
Figure 2-9 The expression of inflammatory markers in a colon epithelial cell line (HT-29 cells) .......................................................................................................................45
Figure 2-10 The expression of inflammatory markers in macrophages .........................46
Figure 2-11 The expression of neutrophil chemokines in the colon of mice .................48
Figure 2-12 The expression of pro-inflammatory factors and neutrophils in the colon of mice ............................................................................................................................49
Figure 2-13 Proposed model of the ADN-AdipoR1 effect in colitis ..............................50
Figure A1 Pre-treatment with DHA reduced expression of M1 markers in THP-1 cells .............................................................................................................................83
Figure A2 Pre-treatment with DHA increased expression of M2 and Mreg markers in THP-1 cells lines ........................................................................................................84
Figure A3 Administration of DHA decreased the percentage of M1 and increased the percentage of M2-like cells in mice ...........................................................................86
Figure A4 Administration of DHA decreased M1 polarization stimulating cyto- kine secretion and increased M2 and Mreg polarization stimulating cytokine secretion in mouse plasma .............................................................................................................88
dc.language.isoen
dc.subject發炎性腸道疾病zh_TW
dc.subject脂聯素zh_TW
dc.subject脂聯素一型接受體zh_TW
dc.subject嗜中性球zh_TW
dc.subject介白素8zh_TW
dc.subject趨化因子zh_TW
dc.subjectadiponectinen
dc.subjectinflammatory bowel diseaseen
dc.subjectchemokineen
dc.subjectIL-8en
dc.subjectneutrophilen
dc.subjectadiponectin receptor 1en
dc.title激活脂聯素一型接受體惡化發炎性腸道疾病zh_TW
dc.titleActivation of adiponectin receptor 1 exacerbates inflammatory bowel diseaseen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree博士
dc.contributor.oralexamcommittee陳明汝(Ming-Ju Chen),陳洵一(Shuen-Ei Chen),陳彥伯(Yen-Po Chen),林原佑(Yuan-Yu Lin)
dc.subject.keyword發炎性腸道疾病,脂聯素,脂聯素一型接受體,嗜中性球,介白素8,趨化因子,zh_TW
dc.subject.keywordinflammatory bowel disease,adiponectin,adiponectin receptor 1,neutrophil,IL-8,chemokine,en
dc.relation.page93
dc.identifier.doi10.6342/NTU201900318
dc.rights.note有償授權
dc.date.accepted2019-01-31
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
3.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved