請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71495完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃永芬(Yung-Fen Huang) | |
| dc.contributor.author | Chung-Wen Huang | en |
| dc.contributor.author | 黃仲汶 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:01:49Z | - |
| dc.date.available | 2022-02-15 | |
| dc.date.copyright | 2019-02-15 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-01-31 | |
| dc.identifier.citation | Aasen A and Baron VS (1993) Winter cereals for pasture. Agdex 133/20-1. Alberta Agriculture, Food and Rural Development, Edmonton, Canada. 4 pp
Aitken I (1974) Flowering time, climate, and genotype. Melbourne University Press, Melbourne, Australia (No. 581.135 A5) Ashraf B, Edriss V, Akdemir D, Autrique E, Bonnett D, Crossa J, Janss L, Singh R, Jannink J-L (2016) Genomic prediction using phenotypes from pedigreed lines with no marker data. Crop Science 56:957-964 Asoro FG, Newell MA, Beavis WD, Scott MP, Tinker NA, Jannink JL (2013) Genomic, marker-assisted, and pedigree-BLUP selection methods for β-glucan concentration in elite oat. Crop Science, 53(5), 1894-1906 Bekele WA, Wight CP, Chao S, Howarth CJ, Tinker NA (2018) Haplotype‐based genotyping‐by‐sequencing in oat genome research. Plant Biotechnology Journal Bleken MA and Skjelvåg AO (1986) The phenological development of oat (Avena sativa L.) cultivars as affected by temperature and photoperiod. Acta Agriculturae Scandinavica, 36:4, 353-365, DOI: 10.1080/00015128609439894 Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19), 2633-2635 Bjørnstad Å, He X, Tekle S, Klos K, Huang YF, Tinker NA, Dong YH, Skinnes H (2017) Genetic variation and associations involving Fusarium head blight and deoxynivalenol accumulation in cultivated oat (Avena Sativa L.). Plant Breeding, 136(5), 620-636 Chaffin AS, Huang YF, Smith S, Bekele WA, Babiker E, Gnanesh BN, Foresman BJ, Blanchard SG, Jay JJ, Reid RW, Wight CP, Chao S, Oliver R, Islamovic E, Kolb FL, McCartney C, Fetch JWM, Beattie AD, Bjørnstad Å, Bonman JM, Langdon T, Howarth CJ, Brouwer CR, Jellen EN, Klos KE, Poland JA, Hsieh T, Brown R, Jackson E, Schlueter JA, Tinker NA (2016) A consensus map in cultivated hexaploid oat reveals conserved grass synteny with substantial subgenome rearrangement. Plant Genome 9. doi:10.3835/plantgenome2015.10.0102 Chaouki AF, Chakroun M, Allagui MB, Sbeita A (2004) Fodder oats in the Maghreb. In: Suttie JM and Reynolds SG (eds) Fodder Oats: A World Overview. Food and Agriculture Organization of the United Nations, Rome Chen CS (2016) Meet the age of the domestic forages. Dairy farmer association R.O.C. Taiwan Coblentz WK, Nellis SE, Hoffman PC, Hall MB, Weimer PJ, Esser NM, Bertram MG (2013) Unique interrelationships between fiber composition, water-soluble carbohydrates, and in vitro gas production for fall-grown oat forages. Journal of Dairy Science 96: 7195-7209, ISSN 0022-0302, https://doi.org/10.3168/jds.2013-6889 Contreras-Govea FE and Albrecht KA (2006) Forage production and nutritive value of oat in autumn and early summer. Crop Science, 46(6), 2382-2386 DAF (2012) Oat production in Queensland – Planting and Nutrition. Queensland Government. https://www.daf.qld.gov.au/business-priorities/plants/field-crops-and-pastures/broadacre-field-crops/oats/planting-information#. Accessed September, 1st 2018 D'Arcy CJ, and Domier LL (2000) Barley yellow dwarf. The Plant Health Instructor. DOI: 10.1094. PHI-I-2000-1103-01 Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PloS One, 6(5), e19379 Erickson DO, Riveland NR, and French EW (1977) The nutritional value of oat hay harvested at several stages of maturity. North Dakota Farm Research (USA) FAOSTAT. 2017. http://www.fao.org/faostat/en/#data/QC. Accessed May 29, 2017 Fernandez MGS, Becraft PW, Yin Y, Lübberstedt T (2009) From dwarves to giants? Plant height manipulation for biomass yield. Trends in Plant Science, 14(8), 454-461 Foresman BJ, Oliver RE, Jackson EW, Chao S, Arruda MP, Kolb FL (2016) Genome-wide association mapping of barley yellow dwarf virus tolerance in spring oat (Avena sativa L.). PloS One, 11(5), e0155376 Friskop A, Liu ZH (2016) Fungal leaf spot diseases of wheat: Tan spot, Septoria/Stagonospora nodorum blotch and Septoria tritici blotch. North Dakota State University Fulton JM, Findlay WI (1966) Influence of soil moisture and ambient temperature on nutrient percentage of oat tissue. Canadian Journal of Soil Science, 46(1), 75-81 Gimenez C, Gallardo M, Thompson RB (2005) Plant-water relations. In: Hillel D and Hatfield JL (eds) Encyclopedia of Soils in the Environment, Vol. 3, Amsterdam: Elsevier Gutierrez-Gonzalez, JJ and Garvin DF (2011) Reference genome-directed resolution of homologous and homeologous relationships within and between different oat linkage maps. The Plant Genome, 4(3), 178-190 Gyeltshen T (2004) Experiences with oats (Avena sativa) at temperate and high elevations in Bhutan. In: Suttie JM and Reynolds SG (eds) Fodder oats: a world overview. Food and Agriculture Organization of the United Nations, Rome Hamilton HH (1948) A developmental study of the apical meristem in four varieties of Avena sativa grown at two temperatures. American Journal of Botany, 35(10), 656-665 Huang YF, Poland JA, Wight CP, Jackson EW, Tinker NA (2014) Using genotyping-by-sequencing (GBS) for genomic discovery in cultivated oat. PloS One, 9(7), e102448 Huang YF and Chen CS (2016) Breeding oats for Taiwan: past and present. Oats2020, November 23-25, 2015, Birgmingham, United Kingdom. Jin H, Domier LL, Shen X, Kolb FL (2000) Combined AFLP and RFLP mapping in two hexaploid oat recombinant inbred populations. Genome, 43(1), 94-101 Kirilov A (2004) Fodder oats in Europe. In: Suttie JM, Reynolds SG (eds) Fodder oats: a world overview. Rome: Food and Agriculture Organization of the United Nations, Plant Production and Protection Series No. 33, pp 179–196 Klos KE, Huang YF, Bekele WA, Obert DE, Babiker E, Beattie AD, Bjornstad A, Bonman JM, Carson ML, Chao S, Gnanesh BN, Griffiths I, Harrison SA, Howarth CJ, Hu GS, Ibrahim A, Islamovic E, Jackson EW, Jannink JL, Kolb FL, McMullen MS, Fetch JM, Murphy JP, Ohm HW, Rines HW, Rossnagel BG, Schlueter JA, Sorrells ME, Wight CP, Yan WK, Tinker NA (2016) Population genomics related to adaptation in elite oat germplasm. The Plant Genome, 9(2) Klos KE, Yimer BA, Babiker EM, Beattie AD, Bonman JM, Carson ML, Chong J, Harrison SA, Ibrahim AMH, Kolb FL, McCartney CA, McMullen M, Fetch JM, Mohammadi M, Murphy JP, Tinker NA (2017) Genome-wide association mapping of crown rust resistance in oat elite germplasm. The Plant Genome Kuroki S (1941) About early-matured-sun-oriented oat. Report of Agricultural Experiment Station of Government-General of Taiwan, no.182 Leggett JM (1992) Classification and speciation in Avena. In: Marshall HG, Sorrells ME (eds) Oat Science and Technology. American Society of Agronomy, Crop Science Society of America, Madison, WI, pp 32-51 Liu MC (1983) Effects of temperature on the agronomic characteristics of oats at different development stages. Journal of the Taiwan Livestock Research 16:1 53-62 Liu MC and Tzeng MT (1984) Study on year-round culture of oat cultivar-N.T.U. sel. no.1. Journal of the Taiwan Livestock Research 17:11-23 Locatelli AB, Federizzi LC, Milach SCK, McElroy AR (2008) Flowering time in oat: genotype characterization for photoperiod and vernalization response. Field Crops Research, 106(3), 242-247 Loskutov IG (2008) On evolutionary pathways of Avena species. Genetic Resources and Crop Evolution 55. 211-220. 10.1007/s10722-007-9229-2 Loskutov IG, Rines HW (2011) Avena. In: Kole C (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg Murphy JP and Hoffman LA (1992) The origin, history, and production of oat. In: Marshall HG, Sorrells ME (eds) Oat Science and Technology. American Society of Agronomy, Crop Science Society of America, Madison, WI, pp 510-572 McKirdy SJ, Jones RAC, and Nutter Jr FW (2002) Quantification of yield losses caused by Barley yellow dwarf virus in wheat and oats. Plant Disease, 86(7), 769-773 Murphy JP and Hoffman LA (1992) The origin, history, and production of oat. In: Marshall HG, Sorrells ME (eds) Oat Science and Technology. American Society of Agronomy, Crop Science Society of America, Madison, WI, pp 2-28 Nielsen KF, Halstead RL, MacLean AJ, Holmes RM, Bourget SJ (1960) The influence of soil temperature on the growth and mineral composition of oats. Canadian Journal of Soil Science, 40(2), 255-263 O'Donoughue LS, Sorrells ME, Tanksley SD, Autrique E, Deynze AV, Kianian SF, Phillips RL, Wu B, Rines HW, Rayapati PJ, Lee M, Penner GA, Fedak G, Molnar SJ, Hoffman D, Salas CA (1995) A molecular linkage map of cultivated oat. Genome, 38(2), 368-380 Oliver RE, Tinker NA, Lazo GR, Chao S, Jellen EN, Carson ML, Rines HW, Obert DE, Lutz JD, Shackelford I, Korol AB, Wight CP, Gardner KM, Hattori J, Beattie AD, Bjornstad A, Bonman JM, Jannink JL, Sorrells ME, Brown-Guedira GL, Fetch JWM, Harrison SA, Howarth CJ, Ibrahim A, Kolb FL, McMullen MS, Murphy JP, Ohm HW, Rossnagel BG, Yan WK, Miclaus KJ, Hiller J, Maughan PJ, Hulse RRR, Anderson JM, Islamovic E, Jackson EW (2013) SNP discovery and chromosome anchoring provide the first physically-anchored hexaploid oat map and reveal synteny with model species. PLoS One, 8(3), e58068 R Core Team (2018) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ Rebolé A, Treviño J, Barro C, Alzueta C, Caballero R (1996) Chemical changes associated with the field drying of oat forage. Field Crops Research 47, 221-226, ISSN 0378-4290, https://doi.org/10.1016/0378-4290(96)00012-3 Schrickel DJ, Burrows VD, Ingemansen JA (1992) Harvesting, storing, and feeding of oat. In: Marshall HG, Sorrells ME (eds) Oat Science and Technology. American Society of Agronomy, Crop Science Society of America, Madison, WI, pp 223-245 Siripoonwiwat W, O'Donoughue LS, Wesenberg D, Hoffman DL, Barbosa-Neto JF, Sorrells ME (1996) Chromosomal regions associated with quantitative traits in oat. J. Quant. Trait Loci, 2(3) Song G, Huo P, Wu B, Zhang Z (2015) A genetic linkage map of hexaploid naked oat constructed with SSR markers. The Crop Journal, 3(4), 353-357 Sorrells ME, Simmons SR (1992) Influence of environment on the development and adaptation of oat. In: Marshall HG, Sorrells ME (eds) Oat Science and Technology. American Society of Agronomy, Crop Science Society of America, Madison, WI, pp 115-163 Suttie JM and Reynolds SG (2004) Fodder oats: a world overview. Plant Production and Protection Series No. 33, FAO, Rome Tinker NA, Chao S, Lazo GR, Oliver RE, Huang YF, Poland JA, Jellen EN, Maughan PJ, Kilian A, Jackson EW (2014). A SNP genotyping array for hexaploid oat. The Plant Genome, 7(3) Tumino G, Voorrips RE, Rizza F, Badeck FW, Morcia C, Ghizzoni R, Germeier CU, Paulo MJ, Terzi V, Smulders MJM (2016) Population structure and genome-wide association analysis for frost tolerance in oat using continuous SNP array signal intensity ratios. Theoretical and Applied Genetics, 129(9), 1711-1724 Tumino G, Voorrips RE, Morcia C, Ghizzoni R, Germeier CU, Paulo MJ, Terzi V, Smulders MJM (2017) Genome-wide association analysis for lodging tolerance and plant height in a diverse European hexaploid oat collection. Euphytica, 213(8), 163 Winkler LR, Bonman JM, Chao S, Yimer BA, Bockelman H, Klos KE (2016) Population structure and genotype–phenotype associations in a collection of oat landraces and historic cultivars. Frontiers in Plant Science, 7, 1077 Wooten DR, Livingston DP, Lyerly HJ, Holland JB, Jellen EN, Marshall DS, Murphy JP (2009) Quantitative trait loci and epistasis for oat winter-hardiness component traits. Crop Science, 49(6), 1989-1998 Young JA, Evans RA, Kay BL (1973) Temperature Requirements for Seed Germination in an Annual-Type Rangeland Community 1. Agronomy Journal, 65(4), 656-659 Zhu S, Kaeppler HF (2003) A genetic linkage map for hexaploid, cultivated oat (Avena sativa L.) based on an intraspecific cross ' Ogle/MAM17-5'. Theoretical and Applied Genetics, 107(1), 26-35 Zimmer CM, Ubert IP, Pacheco MT, Federizzi LC (2018) Molecular and comparative mapping for heading date and plant height in oat. Euphytica, 214(6), 101 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71495 | - |
| dc.description.abstract | 燕麥(Avena sativa L.)為禾本科早熟禾亞科燕麥屬植物,主要供應人類食用,亦為優良的芻料作物;是臺灣草食動物業者偏好之進口乾草選項。為評估臺灣生產芻料燕麥之潛力,本研究透過Quaker International Oat Nursery(QION)引入來自美國及加拿大等8個遍布南北美洲育種單位提供之178個燕麥種原,並於2016年秋季至2017年春季於臺北及恆春兩地分別調查其在臺灣之生長情形及農藝性狀表現。試驗結果顯示,在臺北種植之燕麥開花期平均110天、株高平均100.8公分、每小區(一米單行區)乾草產量平均為367.4公克。於恆春種植之燕麥開花期平均117天、株高平均56.0公分、每小區乾草產量平均558.7公克。我們根據開花日數將試驗品系區分為早、中、晚熟品種,之後根據產量進行選拔:各成熟群表現最佳的個體在臺北或恆春各有不同,但有八個品系於兩地均有良好的產量表現。此外,我們利用覆蓋全基因體之1,164單一核苷酸多型性分子標誌(single nucleotide polymorphisms, SNPs)探討樣本之族群結構及芻料相關性狀的遺傳組成。主成分分析顯示本實驗所使用的品系沒有明顯的分群。全基因體關聯性分析(genome-wide association study,GWAS)顯示位於燕麥共識圖譜(consensus map)Mrg20連鎖群上的GMI_ES_LB_8077與尚未定位的GMI_GBS_18071和開花日數顯著相關(p-value <0.001)。其他與開花期、株高、生物量可能有關的位點分布於Mrg01、02、04、09、20,大多符合前人研究,亦在Mrg13、17、18發現文獻中尚未報導的候選位點。本研究結果可作為選育適合臺灣的芻料燕麥之參考,並有助未來相關性狀遺傳解析。 | zh_TW |
| dc.description.abstract | Oat (Avena sativa L.), which belongs to family Poaceae, subfamily Pooideae, and genus Avena, is mainly used for human consumption. It is also an excellent forage crop, and a preferred hay option often imported by Taiwanese rumen animal husbandry. To evaluate the potential of forage oat production in Taiwan, we introduced through Quaker International Oat Nursery (QION) 178 oat breeding lines from eight breeding programs across North and South America. These breeding lines were evaluated in Taipei and Hengchun, respectively, from fall 2016 to spring 2017. Result showed that the average days-to-flowering of oats in Taipei was 110 days, with 100.8 cm average plant height, and an average dry mass yield of 367.4 g per one-meter single-row plot. The average days-to-flowering of oats in Hengchun was 117 days, with average plant height of 56.0 cm, and the average dry matter yield of 558.7 g per plot. According to days of flowering, entries were divided into early, medium and late groups, and selection was carried out according to the biomass yield performance. Individuals with the best performance in each maturity group in Taipei and in Hengchun were different, but eight entries showed good yield performance at both locations. In addition, we assessed the population structure of our sample by principal component analysis on 1,164 single nucleotide polymorphisms (SNPs) covering the whole genome to explore the genetic structure of the sample population structure and related traits. The results showed no obvious sub-population within the sample. Genome-wide association study indicated two SNP markers, GMI_ES_LB_8077 located on Mrg20 of the oat consensus map and GMI_GBS_18071 at unknown position were significantly associated with days to flowering (p-value <0.001). Several other candidate SNPs that may be associated with flowering, plant height, and yield were co-localised with candidate regions on Mrg01, 02, 04, 09, 20, and were consistent with previous studies. New potential associations on Mrg13, 17, and 18 were observed in our study. The superior entries from our study can be used as new forage varieties or breeding lines in Taiwan and and information provided by this study can help in further genetic analysis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:01:49Z (GMT). No. of bitstreams: 1 ntu-108-R04621116-1.pdf: 2246184 bytes, checksum: b02588ea4957bcbc0d5be438d35a4e45 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 i 摘要 ii Abstract iii Table of Content v List of Tables vii List of Figures viii 1. Introduction 9 1.1 Oat, the plant 9 1.2 Molecular tools in oats 11 1.3 Oat in Taiwan 13 1.4 Objective of the present study 15 2. Materials and Methods 16 2.1 Plant Material 16 2.2 Field experiment 16 2.3 Evaluation of agronomic traits 17 2.4 SNP genotypic data 18 2.5 Phenotypic data 18 2.6 Population structure 19 2.7 Genome-wide association mapping (GWAS) 19 3. Results 20 3.1 Weather investigation during field experiment 20 3.2 Phenotypic evaluation 20 3.3 Correlation analysis 23 3.4 Other field observations 23 3.5 Selection of superior lines 24 3.6 Population structure analysis based on marker data 24 3.7 GWAS 26 4. Discussion 27 4.1 Phenotypic evaluation 27 4.2 Other field observations 30 4.3 Population structure and QTL detected by GWAS using GLM 32 5. Conclusion 34 Reference 61 Appendix 66 | |
| dc.language.iso | en | |
| dc.subject | 燕麥(Avena sativa L.) | zh_TW |
| dc.subject | 芻料 | zh_TW |
| dc.subject | 選拔 | zh_TW |
| dc.subject | 全基因體關聯性分析 | zh_TW |
| dc.subject | genome-wide association mapping (GWAS) | en |
| dc.subject | Oat (Avena sativa L.) | en |
| dc.subject | forage | en |
| dc.subject | selection | en |
| dc.title | 台灣芻料燕麥品系之性狀評估及探索式關聯分析 | zh_TW |
| dc.title | Phenotypic Evaluation and Exploratory Association Analysis of a Diverse Oat Panel for Forage Use in Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林順福(Shun-Fu Lin),陳嘉昇(Chia-Sheng Chen) | |
| dc.subject.keyword | 燕麥(Avena sativa L.),芻料,選拔,全基因體關聯性分析, | zh_TW |
| dc.subject.keyword | Oat (Avena sativa L.),forage,selection,genome-wide association mapping (GWAS), | en |
| dc.relation.page | 71 | |
| dc.identifier.doi | 10.6342/NTU201900350 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-01-31 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 2.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
