Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71490
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈偉強
dc.contributor.authorBo-Ruei Wuen
dc.contributor.author吳柏叡zh_TW
dc.date.accessioned2021-06-17T06:01:43Z-
dc.date.available2026-01-31
dc.date.copyright2019-02-14
dc.date.issued2019
dc.date.submitted2019-01-31
dc.identifier.citation林國詞。2014。雲嘉南地區水稻稻熱病之發生與綜合管理。台南區農業專訊 87:22–25。
施昱全。2017。台農82號誘變系與台灣栽培稻抗稻熱病基因座之定位。國立臺灣大學植物病理與微生物學研究所。
張義璋。2001。水稻稻熱病防治手冊。行政院農業委員會台中農業試驗所。
陳韋綸、沈偉強、張芳瑜、張為斌、余宗學、賴明信、廖睿瑜、吳志文、鍾嘉綾。 2015。應用於臺灣良質米品種改良之抗稻熱病基因座分析與分子標誌開發。植物病理學會刊 24(3&4):225–240。
陳隆澤、陳一心、程永雄。2004。1990至2002年臺灣水稻品種 (系) 抗稻熱病檢定。中華農業研究 53:269–283。
陳勵勤、羅正宗。2016。漫談水稻臺南11號之貢獻。臺南區農業專訊97:12–15。
陳繹年、林宗俊、陳純葳、賴明信、卓緯玄、廖大經、張芳瑜。2013。國際稻米研究所之稻熱病抗性檢定評估技術研習心得分享。農業試驗所技術服務 94:17–22。
陳繹年、陳純葳、林宗俊。2013。台灣地區水稻稻熱病菌生理型之研究 (2011)。台灣農業研究 62:40–56。
曾敏南。2014。稻熱病管理。高雄區農業專訊 88:22–23。
廖大經、陳隆澤、吳志文、鍾嘉綾。2016。水稻'LTH'單基因系與'CO 39'近同源系對臺灣稻熱病菌之反應。台灣農業研究 65(1):8–17。
賴守正。2001。稻熱病發生生態與防治方法。苗栗區農業專訊 14:21–22。
簡錦忠。1974。稻熱病病原菌生理型之研究(1970-1972)。中華農業研究 23:16–37。
Ashikawa, I., Hayashi, N., Yamane, H., Kanamori, H., Wu, J., Matsumoto, T., Ono, K., and Yano, M. 2008. Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics 180:2267–2276.
Białas, A., Zess, E. K., De la Concepcion, J. C., Franceschetti, M., Pennington, H. G., Yoshida, K., Upson, J. L., Chanclud, E., Wu, C.-H., Langner, T., Maqbool, A., Varden, F. A., Derevnina, L., Belhaj, K., Fujisaki, K., Saitoh, H., Terauchi, R., Banfield, M. J., and Kamoun, S. 2017. Lessons in effector and NLR biology of plant-microbe systems. Mol. Plant Microbe Interact. 31:34–45.
Chen, C. X., Chen, M. L., Hu, J. N., Zhang, W. J., Zhong, Z. H., Jia, Y. L., Allaux, L., Fournier, E., Tharreau, D., Wang, G. L., Wang Z. H., Shen, W. C., Lu, G. D., Wang, B. H., and Mitchell, T. K. 2014. Sequence variation and recognition specificity of the avirulence gene AvrPiz-t in Magnaporthe oryzae field populations. Fungal Genom. Biol. 4:113.
Chen, J., Peng, P., Tian, J., He, Y., Zhang, L., Liu, Z., Yin, D., and Zhang, Z. 2015. Pike, a rice blast resistance allele consisting of two adjacent NBS-LRR genes, was identified as a novel allele at the Pik locus. Mol. Breed. 35:1–15.
Chen, X., Shang, J., Chen, D., Lei, C., Zou, Y., Zhai, W., Liu, G., Xu, J., Ling, Z., Cao, G., Ma, B., Wang, Y., Zhao, X., Li, S., and Zhu, L. 2006. A B-lectin receptor kinase gene conferring rice blast resistance. Plant J. 46:794–804.
Chumley, F. G., and Valent, B. 1990. Genetic analysis of melanin-deficient, nonpathogenic mutants of Magnaporthe grisea. Mol. Plant Microbe Interact. 3:135–143.
Daboussi, M. J. 1996. Fungal transposable elements: Generators of diversity and genetic tools. J. Genet. 75: 325–339.
Dean R., Van Kan J. A., Pretorius Z. A., Hammond-Kosack K. E., Di Pietro A., Spanu P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J., and Foster, G. D. 2012. The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13:414–430.
de Jong, J. C., McCormack, B. J., Smirnoff, N., and Talbot, N. J. 1997. Glycerol generates turgor in rice blast. Nature 389:471–483.
de Guillen, K., Ortiz-Vallejo, D., Gracy, J., Fournier, E., Kroj, T., and Padilla, A. 2015. Structure analysis uncovers a highly diverse but structurally conserved effector family in phytopathogenic fungi. PLoS Pathog. 11:e1005228.
Dong, S., Raffaele, S., and Kamoun, S. 2015. The two-speed genomes of filamentous pathogens: waltz with plants. Curr. Opin. Gen. Dev. 35:57–65.
Elmore, J. M., Lin, Z. J., and Coaker, G. 2011. Plant NB-LRR signaling: upstreams and downstreams. Curr Opin Plant Biol 14:365–371.
Farman, M. L., Tosa, Y., Nitta, N., and Leong, S. A. 1996. MAGGY, a retrotransposon in the genome of the rice blast fungus Magnaporthe grisea. Mol. Gen. Genet. 251:665–674
Farman, M. L., Taura, S., and Leong, S. A. 1996. The Magnaporthe grisea DNA fingerprinting probe MGR586 contains the 30 end of an inverted repeat transposon. Mol. Gen. Genet. 251:675–681
Fukuoka, S., Saka, N., Koga, H., Ono, K., Shimizu, T., Ebana, K., Hayashi, N., Takahashi, A., Hirochika, H., Okuno, K., and Yano, M. 2009. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325:998–1001.
George, M. L., Nelson, R. J., Zeigler, R. S., and Leung, H. 1998. Rapid population analysis of Magnaporthe grisea by using rep-PCR and endogenous repetitive DNA sequences. Phytopathology 88:223–229.
Hamer, J. E., Howard, R. J., Chumley, F. G., and Valent, B. 1988. A mechanism for surface attachment in spores of a plant pathogenic fungus. Science 239:288–290.
Hogenhout, S. A., Van der Hoorn, R. A., Terauchi, R., and Kamoun, S. 2009. Emerging concepts in effector biology of plant-associated organisms. Mol. Plant Microbe Interact. 22:115–122.
Hua, L., Wu, J., Chen, C., Wu, W., He, X., Lin, F., Wang, L., Ashikawa, I., Matsumoto, T., and Pan, Q. 2012. The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor. Appl. Genet. 125:1047–1055.
Huang, J., Si W., Deng, Q., Li P., and Yang, S. 2014. Rapid evolution of avirulence genes in rice blast fungus Magnaporthe oryzae. BMC Genet. 15:45.
Kachroo, P., Leong, S. A., and Chattoo, B. B. 1994. Pot2, an inverted repeat transposon from the rice blast fnngus Magnaporrhe grisea. Mol. Gen. Gonet. 245:339–348.
Kanzaki, H., Yoshida, K., Saitoh H., Fujisak,i K., Hirabuchi, A., Alaux, L., Fournier, E., Tharreau, D., and Terauchi, R. 2012. Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J. 72:894–907.
Kobayashi, N., Yanoria, M. J. T., Tsunematsu, H., Kato, H., Imbe, T., and Fukuta, Y. 2007. Development of new sets of international standard differential varieties for blast resistance in rice (Oryza sativa L.). JARQ 41:31–37.
Khush, G. S. 2005. What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol. Biol. 59:1–6.
Kusaba M., Luo C. X., Hanamura H., Misaka M., Mochida T., Fujita Y., and Tosa Y. 2008. An avirulence gene to rice cultivar K60 is located on the 1.6-Mb chromosome in Magnaporthe oryzae isolate 84R62B. J. Gen. Plant Pathol. 74:250–253.
Li, W., Wang, B., Wu, J., Lu, G., Hu, Y., Zhang, X., Zhang, Z., Zhao, Q., Feng, Q., Zhang, H., Wang, Z., Wang, G., Han, B., Wang, Z., and Zhou, B. 2009. The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol. Plant Microbe Interact. 22:411–420.
Liu, W., Liu, J., Ning, Y., Ding, B., Wang, X., Wang, Z., and Wang, G. L. 2013. Recent progress in understanding PAMP- and effector-triggered immunity against the rice blast fungus Magnaporthe oryzae. Mol. Plant 6:605–620.
Luo, C. X., Yin, L. F., Ohtaka, K., and Kusaba, M. 2007. The 1.6 Mb chromosome carrying the avirulence gene AvrPik in Magnaporthe oryzae isolate 84R-62B is a chimera containing chromosome 1 sequences. Mycol. Res. 111, 232–239.
Luo, C. X., Yin, L. F., Koyanagi, S., Farman, M. L., Kusaba, M., and Yaegashi, H. 2005. Genetic mapping and chromosomal assignment of Magnaporthe oryzae avirulence genes AvrPik, AvrPiz, and AvrPiz-t controlling cultivar specificity on rice. Phytopathology 95:640–647.
Malagnac, F., Wendel, B., Goyon, C., Faugeron, G., Zickler, D., Rossignol, J. L., Noyer-Weidner, M., Vollmayr, P., Trautner, T. A., and Walter, J. 1997. A gene essential for de novo methylation and development in Ascobolus reveals a novel type of eukaryotic DNA methyltransferase structure. Cell 91:281–290
Ou, S. H. 1985. Rice Diseases. CABI, Wallingford, United Kingdom.
Talbot, N. J. 2003. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu. Rev. Microbiol. 57:177–202.
Tanweer, F., Rafii, M., Sijam, K., Rahim, H., Ahmed, F., and Latif, M. 2015. Current advance methods for the identification of blast resistance genes in rice. C. R. Biol. 338:321–334.
Thon, M. R., Pan H., Diener, S., Papalas, J., Taro, A., Mitchell, T. K., and Dean, R. A. 2006. The role of transposable element clusters in genome evolution and loss of synteny in the rice blast fungus Magnaporthe oryzae. Genome Biol. 7:R16
Tian, M., Huitema, E., da Cunha, L., Torto-Alalibo, T., and Kamoun, S. 2004. A Kazal-like extracellular serine protease inhibitor from Phytophthora infestans targets the tomato pathogenesis-related protease P69B. J. Biol. Chem. 279:26370–26377.
Wang, B. H., Ebbole, D. J., and Wang, Z. H. 2017. The arms race between Magnaporthe oryzae and rice: Diversity and interaction of Avr and R genes. J. Integr. Agric. 16:2746–2760.
Wilson, R. A., and Talbot, N. J. 2009. Under pressure: Investigating the biology of plant infection by Magnaporthe oryzae. Nat. Rev. Microbiol. 7:185–195.
Wu, J., Kou, Y., Bao, J., Li, Y., Tang, M., Zhu, X., Ponaya, A., Xiao, G., Li, J., Li, C., Song, M., Cumagun, C., Deng, Q., Lu, G., Jeon, J., Naqvi, N., and Zhou, B. 2015. Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice. New Phytol. 206:1463–1475.
Yoshida, K., Saunders, D. G. O., Mitsuoka, C., Natsume, S., Kosugi, S., Saitoh, H., Inoue, Y., Chuma, I., Tosa, Y., Cano, L. M., Kamoun, S., and Terauchi, R. 2016. Host specialization of the blast fungus Magnaporthe oryzae is associated with dynamic gain and loss of genes linked with transposable elements. BMC Genomics 17:370.
Yoshida, K., Saitoh, H., Fujisawa, S., Kanzaki, H., Matsumura, H., Yoshida, K., Tosa, Y., Chuma, I., Takano, Y., Win, J., Kamoun, S., and Terauchi, R. 2009. Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell 21:1573–1591.
Yuan, B., Zhai, C., Wang, W., Zeng, X., Xu, X., Hu, H., Lin, F., Wang, L., and Pan, Q. 2011. The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor. Appl. Genet. 122:1017–1028.
Yue, J. -X., Meyers, B. C., Chen, J. -Q., Tian, D., and Yang, S. 2012. Tracing the origin and evolutionary history of plant nucleotide-binding site–leucine-rich repeat (NBS-LRR) genes. New Phytol. 193:1049–1063.
Zhai, C., Lin, F., Dong, Z., He, X., Yuan, B., Zeng, X., Wang, L., and Pan, Q. 2011. The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol. 189:321–334.
Zhai, C., Zhang, Y., Yao, N., Lin, F., Liu, Z., Dong, Z., Wang, L., and Pan, Q. 2014. Function and interaction of the coupled genes responsible for Pik-h encoded rice blast resistance. PLoS ONE 9:e98067.
Zhang, S., and Xu, J. R. 2014. Effectors and effector delivery in Magnaporthe oryzae. PLoS Pathog. 10:e1003826.
Zhang, S., Wang, L., Wu, W., He, L., Yang, X. and Pan, Q. 2015. Function and evolution of Magnaporthe oryzae avirulence gene AvrPib responding to the rice blast resistance gene Pib. Sci. Rep. 5:11642.
Zipfel, C. 2014. Plant pattern-recognition receptors. Trends Immunol. 35:345–351.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71490-
dc.description.abstract稻熱病(rice blast disease),為子囊真菌Magnaporthe oryzae所造成的水稻重要病害,其可感染水稻葉、莖及穗,每年皆造成全球水稻產量嚴重的損失,對糧食安全具有重大威脅。稻熱病重要的防治策略之一,為種植抗病品種,但由於田間稻熱病菌具有高度的遺傳變異性,使得原本抗病的水稻品種在推出幾年後,便逐漸失去抗病性,其中最顯著的例子為稻熱病菌avirulence(AVR) gene之變異。本研究探討臺灣稻熱病菌AVR-Pik基因型之組成及其遺傳變異,首先自IRRI LTH IRBL判別品系病圃及臺灣各地田間,採集病葉並利用單孢分離法分離稻熱病菌株,進行核酸之萃取。接著,以聚合酶連鎖反應(PCR)增幅AVR-Pik基因,經由選殖及DNA定序發現,臺灣稻熱病菌AVR-Pik之基因型主要為A及D兩類型,而A型中發現分別有兩種跳躍子(transposable element)之插入性突變,其一為Mg-SINE插入於AVR-Pik基因之ORF區域(AI),而另一為Pot3插入AVR-Pik基因之終止序列(terminator)區域(AII);利用變異性菌株進行病原性測定(pathogenicity assay),顯示此兩種插入性突變皆會導致AVR-Pik A型基因功能的喪失。進一步選定2016至2018年間三個不同監測病圃,進行族群AVR-Pik基因型組成之分析,發現三個地區稻熱病菌族群AVR-Pik基因型主要皆為A+D之混合型菌株,而第二大主要族群於臺東關山病圃為AI+D之混合型,而屏東長治病圃及新竹峨嵋病圃兩處,則皆為A+AI+D之混合型。此外,選定臺灣商業化品種台南11號、台稉糯3號、台農77號及台農79號,進行水稻稻熱病Pik抗性基因之分析,結果顯示台南11號與文獻中的Piks胺基酸序列完全一致,而台稉糯3號、台農77號及台農79號則與Pik序列最為相近,僅在Pik1第465胺基酸位點由絲胺酸(Serine)轉變為脯胺酸(Proline)。田間種植具有垂直抗性基因的水稻抗病品種會增加稻熱病菌生存的選汰壓力,導致病原菌相對應的AVR基因變異喪失功能,進而造成田間抗性的消失,因此持續監控稻熱病菌株AVR基因的動態變異情形,將有助於病害流行的預防,以及抗病品種的選育與種植推廣策略。zh_TW
dc.description.abstractRice blast disease is caused by the ascomycete Magnaporthe oryzae, which can infect rice leaves, stems and spikes. The disease leads to severe economic loss around the world every year. To control rice blast disease, breeding and deployment of resistant varieties is one of the effective methods in many countries. However, due to highly genetic variation of rice blast fungi, breakdown of resistant varieties often occurs within few years when released for commercial production in monoculture fields. The most significant example is the mutation of M. oryzae avirulence (AVR) gene. The objective of this study is to determine the composition of AVR-Pik genotype among blast population by surveying IRRI LTH IRBL disease monitoring nursery and commercial fields in Taiwan. Firstly, blast fungi were isolated by single conidial isolation from leaf blast samples. M. oryzae DNA was extracted and then subjected to AVR-Pik gene PCR identification. According to DNA cloning and sequencing results, we found AVR-Pik A and D allele types in the blast population of Taiwan. Interestingly, two types of transposon insertional mutation were identified in AVR-Pik A allele among Taiwan population, including Mg-SINE inserted at ORF (AI) and Pot3 inserted at the terminator region (AII). According to pathogenicity assay, both mutations resulted in the loss of AVR-Pik-A function. We further selected three different IRRI LTH IRBL disease monitoring plots and analyzed AVR-Pik genotype composition among blast population from 2016 to 2018. The results showed that AVR-Pik A+D was the major genotype. The second largest population, AI+D, was mainly discovered in Guanshan, Taitung County. However, the second largest population found in Changzhi, Pingtung County and Ermei, Hsinchu County was A+AI+D genotype. Furthermore, a number of commercial rice varieties including TN11, TKW3, TNG77 and TNG79 were selected to analyze their Pik blast resistant gene. The results revealed that TN11 Pik1 gene was identical to Piks, whereas Pik1 alleles of TKW3, TNG77 and TNG79 were most similar to Pik allele except amino acid substitution at 465 position from Serine to Proline. The resistant rice varieties carrying vertical resistance gene pose survival pressure to blast population in the fields. The blast fungi then evolve to lose the function of AVR gene and consequently break down the field resistance. Therefore, pathogen surveillance such as monitoring the occurrence and dynamics of mutated AVR alleles will help prevent the epidemics of blast disease and set the strategies for breeding and deployment of resistant rice varieties for commercial production.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:01:43Z (GMT). No. of bitstreams: 1
ntu-108-R05633018-1.pdf: 6265619 bytes, checksum: 6f9d5bcfb27d844c429d750e7673da83 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書
中文摘要......................................................i
ABSTRACT....................................................iii
目錄..........................................................v
表目錄.......................................................ix
圖目錄........................................................x
第一章 研究背景及動機........................................1
第二章 前人研究..............................................3
2.1 稻熱病菌之危害與發生..................................3
2.2 稻熱病菌生理小種之劃分與分子標誌......................5
2.3 植物抗性基因與水稻單抗稻熱病基因之發展................6
2.4 稻熱病菌AVR基因之研究.................................9
2.5 稻熱病菌AVR-Pik基因型與水稻Pik alleles之共演化.......10
第三章 材料方法.............................................13
3.1 稻熱病菌之來源與收集.................................13
3.1.1 病害樣品之採集與菌株分離.............................13
3.1.2 稻熱病菌的培養與保存.................................13
3.2 核酸之萃取...........................................13
3.2.1 水稻基因體核酸之萃取.................................13
3.2.2 稻熱病菌基因體核酸之萃取.............................14
3.2.3 稻熱病水稻病葉單斑基因體核酸之萃取...................15
3.3 稻熱病菌病原性測定...................................15
3.3.1 水稻材料培育.........................................15
3.3.2 稻熱病菌菌株之培養與接種.............................16
3.4 水稻稻熱病抗病Pik基因PCR引子之設計與增幅.............16
3.5 稻熱病菌Pot2分子標誌與AVR-Pik基因的PCR引子設計與增幅.17
3.5.1 Pot2 rep-PCR之增幅及電泳圖譜親緣分析.................17
3.5.2 稻熱病菌AVR-Pik基因PCR引子之設計與增幅...............18
3.5.3 田間稻熱病單斑樣品之快速檢測.........................19
3.6 稻熱病菌AVR-Pik基因之選殖與定序......................19
3.6.1 稻熱病菌AVR-Pik基因之選殖............................19
3.6.2 大腸桿菌質體之DNA抽取................................20
3.6.3 限制酶反應...........................................20
第四章 結果.................................................22
4.1 稻熱病菌菌株之分離與挑選.............................22
4.2 稻熱病菌AVR-Pik基因之分析............................22
4.2.1 AVR-Pik基因型之分析..................................22
4.2.2 AVR-Pik 基因之突變分析...............................23
4.2.3 AVR-Pik 基因群之劃分.................................24
4.3 稻熱病菌Pot2親緣譜系與不同AVR-Pik基因型之關聯性分析..25
4.4 不同AVR-Pik基因型稻熱病菌代表菌株的接種..............26
4.5 不同年度及地區臺灣稻熱病菌AVR-Pik基因型及插入性突變之比較分析.......................................................29
4.6 臺灣商業化品種台南11號、台稉糯3號及台農77號Pik基因之分析...........................................................29
4.7 Pik單抗性基因水稻品系及臺灣商業化品種稉稻栽培稻之稻熱病分離株AVR-Pik基因型分析......................................30
4.8 感染Pik抗性基因水稻品系之稻熱病菌AVR-Pik基因啟動子分析 .............................................................31
4.9 稻熱病單斑樣品之快速檢測.............................32
第五章 討論.................................................33
5.1 臺灣田間稻熱病菌AVR-Pik基因型之組成..................33
5.2 臺灣田間稻熱病菌AVR-Pik基因之變異....................35
5.2.1 AVR-Pik ORF之突變....................................35
5.2.2 AVR-Pik啟動子之突變..................................36
5.3 臺灣商業化水稻品種Pik基因之抗性表現..................36
第六章 參考文獻.............................................39
第七章 表...................................................44
第八章 圖...................................................54
附錄.........................................................84
dc.language.isozh-TW
dc.subject稻熱病zh_TW
dc.subject稻熱病菌zh_TW
dc.subjectAVR-Pikzh_TW
dc.subjectPikzh_TW
dc.subjectPiken
dc.subjectrice blasten
dc.subjectMagnaporthe oryzaeen
dc.subjectAVR-Piken
dc.title臺灣稻熱病菌AVR-Pik基因型組成與致病性之分析zh_TW
dc.titleThe AVR-Pik genotype composition and pathogenicity of
Magnaporthe oryzae in Taiwan
en
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee吳永培,劉瑞芬,鍾嘉綾
dc.subject.keyword稻熱病,稻熱病菌,AVR-Pik,Pik,zh_TW
dc.subject.keywordrice blast,Magnaporthe oryzae,AVR-Pik,Pik,en
dc.relation.page90
dc.identifier.doi10.6342/NTU201900316
dc.rights.note有償授權
dc.date.accepted2019-01-31
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
6.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved