Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71482
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙聖德
dc.contributor.authorQi-Sheng Chenen
dc.contributor.author陳麒生zh_TW
dc.date.accessioned2021-06-17T06:01:33Z-
dc.date.available2024-02-14
dc.date.copyright2019-02-14
dc.date.issued2019
dc.date.submitted2019-01-31
dc.identifier.citation[1] Li, A. H. T., Huang, S. C., & Chao, S. D. (2010). Molecular dynamics simulation of liquid carbon tetrachloride using ab initio force field. The Journal of chemical physics, 132(2), 024506.
[2] Yin, C. C., Li, A. H. T., & Chao, S. D. (2013). Liquid chloroform structure from computer simulation with a full ab initio intermolecular interaction potential. The Journal of chemical physics, 139(19), 194501.
[3] Chao, S. W., Li, A. H. T., & Chao, S. D. (2009). Molecular dynamics simulations of fluid methane properties using ab initio intermolecular interaction potentials. Journal of computational chemistry, 30(12), 1839-1849.
[4] Saenger, W., & Jeffrey, G. A. (1991). Hydrogen bonding in biological structures. Springer-Verlag, Berlin.
[5] Stone, A. J. (1996). The theory of intermolecular forces. International Series of Monographs on Chemistry, vol. 32.
[6] Dunning, T. H. (2000). A road map for the calculation of molecular binding energies. The Journal of Physical Chemistry A, 104(40), 9062-9080.
[7] Stone, A. (2013). The theory of intermolecular forces. OUP Oxford.
[8] Zhao, Y., & Truhlar, D. G. (2005). Benchmark databases for nonbonded interactions and their use to test density functional theory. Journal of Chemical Theory and Computation, 1(3), 415-432.
[9] Marchetti, O., & Werner, H. J. (2009). Accurate calculations of intermolecular interaction energies using explicitly correlated coupled cluster wave functions and a dispersion-weighted MP2 method. The Journal of Physical Chemistry A, 113(43), 11580-11585.
[10] Raghavachari, K., Trucks, G. W., Pople, J. A., & Head-Gordon, M. (1989). A fifth-order perturbation comparison of electron correlation theories. Chemical Physics Letters, 157(6), 479-483.
[11] Friesner, R. A. (2005). Ab initio quantum chemistry: Methodology and applications. Proceedings of the National Academy of Sciences, 102(19), 6648-6653.
[12] Frenkel, D., & Smit, B. (2001). Understanding molecular simulation: from algorithms to applications (Vol. 1). Elsevier.
[13] Jeziorski, B., Moszynski, R., & Szalewicz, K. (1994). Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chemical Reviews, 94(7), 1887-1930.
[14] Marques, M. A., & Gross, E. K. (2004). Time-dependent density functional theory. Annu. Rev. Phys. Chem., 55, 427-455.
[15] Krishnan, R. B. J. S., Binkley, J. S., Seeger, R., & Pople, J. A. (1980). Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions. The Journal of Chemical Physics, 72(1), 650-654.
[16] Dunning Jr, T. H. (1989). Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. The Journal of chemical physics, 90(2), 1007-1023.
[17] Boys, S. F., & Bernardi, F. D. (1970). The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19(4), 553-566.
[18] Turney, J. M., Simmonett, A. C., Parrish, R. M., Hohenstein, E. G., Evangelista, F. A., Fermann, J. T., ... & Russ, N. J. (2012). Psi4: an open‐source ab initio electronic structure program. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2(4), 556-565.
[19] Frisch, M. J. E. A., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., ... & Nakatsuji, H. (2009). Gaussian 09, revision a. 02, gaussian. Inc., Wallingford, CT, 200.
[20] Rapaport, D. C., & Rapaport, D. C. R. (2004). The art of molecular dynamics simulation. Cambridge university press.
[21] Myers, R. J., & Gwinn, W. D. (1952). The Microwave Spectra, Structure, Dipole Moment, and Chlorine Nuclear Quadrupole Coupling Constants of Methylene Chloride. The Journal of Chemical Physics, 20(9), 1420-1427.
[22] Tullini, F., Nivellini, G. D., Carlotti, M., & Carli, B. (1989). The far-infrared spectrum of methylene chloride. Journal of Molecular Spectroscopy, 138(2), 355-374.
[23] Martin, J. M. (1996). Ab initio total atomization energies of small molecules—towards the basis set limit. Chemical physics letters, 259(5-6), 669-678.
[24] Helgaker, T., Klopper, W., Koch, H., & Noga, J. (1997). Basis-set convergence of correlated calculations on water. The Journal of chemical physics, 106(23), 9639-9646.
[25] Feller, D. (1992). Application of systematic sequences of wave functions to the water dimer. The Journal of chemical physics, 96(8), 6104-6114.
[26] Press, W. H., Press, W. H., Flannery, B. P., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T., & Vetterling, W. T. (1989). Numerical recipes in Pascal: the art of scientific computing (Vol. 1). Cambridge University Press.
[27] Yaws, C. L. (2014). Transport properties of chemicals and hydrocarbons. William Andrew.
[28] Pothoczki, S., Kohara, S., & Pusztai, L. (2010). Partial radial distribution functions of methylene halide molecular liquids. Journal of Molecular Liquids, 153(2-3), 112-116.
[29] Bálint, S., Bakó, I., Grósz, T., & Megyes, T. (2007). Structure of liquid methylene chloride: Molecular dynamics simulation compared to diffraction experiments. Journal of Molecular Liquids, 136(3), 257-266.
[30] Prielmeier, F. X., & Lüdemann, H. D. (1986). Self diffusion in compressed liquid chloromethane, dichloromethane and trichloromethane. Molecular Physics, 58(3), 593-604.
[31] Riddick, J. A., Bunger, W. B., & Sakano, T. K. (1986). Organic solvents: physical properties and methods of purification.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71482-
dc.description.abstract量子計算部分我們採用自洽理論(Hartree-Fock,HF)、微擾理論(Møller-Plesset perturbation theory,MP2)、密度泛函理論(Density Functional Theory,DFT)、以及耦合簇理論(Coupled Cluster method,CC)等四種理論來計算二氯甲烷分子之間的作用力並且皆搭配BSSE(Basis Set Superposition Errors)修正,其中HF、DFT及MP2等方法搭配Dunning’s correlation consistent及Pople’s medium size基底來計算單體及雙體的最佳化構型,並且使用MP2計算結果與CCSD(T)搭配aug-cc-pVXZ(X=D、T、Q)基底計算出的結果來做比較,接著使用四種DFT方法搭配11種基底來與CCSD(T)的結果來做比較,以找出節省計算資源的方法。再來我們針對其12種構型配合PSI4軟體中的SAPT(Symmetry-Adapted Perturbation Theory)分析分解出不同構型的能量組合,其中包含靜電能、誘導能、交換能及色散能,以便我們分析其吸引力及排斥力對二氯甲烷分子二聚體的影響。
分子動力學模擬部分我們使用MP2搭配aug-cc-pVQZ進行單體最佳化,並且從其可能出現的38種構型裡選擇12種較具代表性的構型來進行擬合,擬合部份我們選擇5site Lennard-Jones potential model並加上庫倫項來擬合量子化學計算得到的二聚體能量曲線,接著代入牛頓方程式來進行分子動力學模擬,得到二氯甲烷的平衡性質和動態性質。二氯甲烷的分子動力學模擬我們模擬了徑向分佈函數(Radial Distribution Function,RDF)、速度自相關係數(Velocity Autocorrelation Function,VAF)、擴散係數(Diffusion Constant)以及黏滯係數(Viscosity),並與現有的文獻做比較,皆有不錯的準確度,這表示以量子化學計算所建構出的力場來進行分子動力學模擬有一定的可靠度。
zh_TW
dc.description.abstractIn the quantum chemical calculation part, we use Hartree-Fock self-consistent theory(HF), second-order Møller-Plesset perturbation theory(MP2), Density Functional Theory (DFT), and Coupled Cluster method (CC). We use these four theories to calculate the intermolecular interaction of methylene chloride and the correction of the basis set superposition errors(BSSE) has been included. In the optimized structure of dimer and binding energy calculations of methylene chloride, we use HF, DFT and MP2 method with Dunning’s correlation consistent basis sets(cc-pVDZ up to aug-cc-pVQZ) and Pople’s medium size basis sets(6-31(G) up to 6-311++G(3df,3pd)), and the results are compare with the calculated by single-point coupled cluster with single and double and perturbative triple excitation(CCSD(T)). Furthermore, we analyzed the energy composition of the 12 configurations with the Symmetry-Adapted Perturbation Theory(SAPT) in the PSI4 software, including electrostatic energy, induction energy, exchange energy and dispersion energy.
In the molecular dynamics simulation part, we used MP2 with aug-cc-pVQZ for monomer optimization, and selected 12 representative configurations from 38 possible configurations to fit. In the fitting part, we chose the 5site Lennard-Jones potential model including the Coulomb term to fit the ab initio data, and then substituted into the Newton equation for molecular dynamics simulation to obtain the equilibrium and dynamic properties of dichloromethane. We compared the radial distribution function (RDF), velocity autocorrelation function (VAF), diffusion constant, and viscosity with the scientific literature, the simulation results are consistent with experiment data. This indicates that molecular dynamics simulations using force fields constructed by quantum chemical calculations can accurately reproduce thermodynamic properties.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:01:33Z (GMT). No. of bitstreams: 1
ntu-108-R05543086-1.pdf: 2825380 bytes, checksum: 65a655e1297ae20122c0a7bb1e84082d (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 #
致謝 i
摘要 ii
ABSTRACT iv
目錄 vi
圖目錄 ix
表目錄 xi
第一章 緒論 1
第二章 基本理論 4
2.1 量子力學理論 4
2.1.1 量子力學之發展 4
2.1.2 薛丁格方程式(Schrödinger equation) 5
2.2 MO理論 7
2.2.1 全初始法Ab initio 8
2.2.2 哈特里-褔克近似法Hartree-Fock approximation 8
2.2.3 微擾理論Møller-Plesset perturbation theory 11
2.2.4 對稱適應微擾理論Symmetry-Adapted Perturbation Theory 13
2.3 分子動力學理論 14
2.3.1 基本理論 14
2.3.2 徑向分佈函數 16
2.3.3 速度自相關函數 17
2.2.4 擴散係數與黏滯係數 17
第三章 計算方法 20
3.1 量子化學計算方法 21
3.2 5 sites model曲線擬合方法 24
3.3 分子動力學(MD)模擬方法 25
第四章 模擬與計算結果 26
4.1 二氯甲烷二聚體之量子化學計算結果 27
4.1.1 二氯甲烷單體結構最佳化結果 27
4.1.2 二氯甲烷MP2搭配不同基底計算結果 27
4.1.3 二氯甲烷二聚體12種構型搭配MP2/aQZ計算結果 29
4.1.4 二氯甲烷二聚體MP2、CCSD(T)-CBS計算結果 31
4.1.5 HF之二氯甲烷二聚體計算結果 31
4.1.6 二氯甲烷12種構型SAPT分析 36
4.1.7 CCSD(T)、MP4及MP2能量誤差比較 39
4.1.8 DFT與其他方法差異之比較 43
4.2 二氯甲烷二聚體之曲線擬合結果 50
4.2.1 二氯甲烷二聚體能量較深構型曲線擬合計算結果 51
4.2.2 二氯甲烷二聚體能量較淺構型曲線擬合計算結果 53
4.3 擬合參數對三軸能量曲面圖檢驗 54
4.3.1 擬合參數對X軸旋轉之曲面圖結果 55
4.3.2 擬合參數對Y軸旋轉之曲面圖結果 56
4.3.3 擬合參數對Z軸旋轉之曲面圖結果 57
4.4 二氯甲烷MD模擬結果 58
4.4.1 徑向分佈函數RDF 59
4.4.2 速度自相關函數VAF 61
4.4.3 擴散係數與黏滯係數 62
4.4.4 四氯化碳、三氯化碳、二氯化碳徑向分佈函數之比較 65
第五章 結論與未來展望 66
參考文獻 69
附錄 72
dc.language.isozh-TW
dc.subject分子動力學模擬zh_TW
dc.subject徑向分佈函數zh_TW
dc.subject速度自相關函數zh_TW
dc.subject擴散係數zh_TW
dc.subject黏滯係數zh_TW
dc.subject耦合簇理論zh_TW
dc.subject密度泛函理論zh_TW
dc.subject微擾理論zh_TW
dc.subject自洽理論zh_TW
dc.subject二氯甲烷zh_TW
dc.subjectDichloromethaneen
dc.subjectViscosity coefficienten
dc.subjectDiffusion Coefficienten
dc.subjectVelocity Autocorrelation Function(VAF)en
dc.subjectRadial Distribution Function(RDF)en
dc.subjectCoupled Cluster(CC) methoden
dc.subjectDensity Functional Theory(DFT)en
dc.subjectMolecular Dynamics(MD) simulationen
dc.subjectMoller-Plesset perturbation theory(MP)en
dc.subjectHartree-Fock(HF)en
dc.subjectMethylene chlorideen
dc.title二氯甲烷之量子化學勢能計算與分子動力學模擬zh_TW
dc.titleQuantum Chemistry Calculated Intermolecular Interaction and Molecular Dynamics Simulation of Dichloromethaneen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee江志強,張秀華,陳俊杉,李皇德
dc.subject.keyword二氯甲烷,自洽理論,微擾理論,耦合簇理論,密度泛函理論,分子動力學模擬,徑向分佈函數,速度自相關函數,擴散係數,黏滯係數,zh_TW
dc.subject.keywordDichloromethane,Methylene chloride,Hartree-Fock(HF),Moller-Plesset perturbation theory(MP),Molecular Dynamics(MD) simulation,Density Functional Theory(DFT),Coupled Cluster(CC) method,Radial Distribution Function(RDF),Velocity Autocorrelation Function(VAF),Diffusion Coefficient,Viscosity coefficient,en
dc.relation.page85
dc.identifier.doi10.6342/NTU201900267
dc.rights.note有償授權
dc.date.accepted2019-02-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
2.76 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved