Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71476
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊雅倩(Ya-Chien Yang)
dc.contributor.authorPo-Lin Chenen
dc.contributor.author陳柏霖zh_TW
dc.date.accessioned2021-06-17T06:01:26Z-
dc.date.available2022-03-05
dc.date.copyright2019-03-05
dc.date.issued2019
dc.date.submitted2019-02-11
dc.identifier.citation1 台灣衛生福利部2017公布106年癌症資料.
2 台灣衛生福利部105年死因統計結果分析.
3 Siegel, R. L., Miller, K. D. and Jemal, A. Cancer Statistics, 2017. CA Cancer J Clin 67, 7-30, doi:10.3322/caac.21387 (2017).
4 Mundade, R., Imperiale, T. F., Prabhu, L., et al. Genetic pathways, prevention, and treatment of sporadic colorectal cancer. Oncoscience 1, 400-406, doi:10.18632/oncoscience.59 (2014).
5 Jasperson, K. and Burt, R. W. The Genetics of Colorectal Cancer. Surgical oncology clinics of North America 24, 683-703, doi:10.1016/j.soc.2015.06.006 (2015).
6 Lynch, H. T., Snyder, C. L., Shaw, T. G., et al. Milestones of Lynch syndrome: 1895-2015. Nature reviews. Cancer 15, 181-194, doi:10.1038/nrc3878 (2015).
7 Macrae, F., du Sart, D. and Nasioulas, S. Familial adenomatous polyposis. Best practice & research. Clinical gastroenterology 23, 197-207, doi:10.1016/j.bpg.2009.02.010 (2009).
8 Haggar, F. A. and Boushey, R. P. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clinics in colon and rectal surgery 22, 191-197, doi:10.1055/s-0029-1242458 (2009).
9 Tariq, K. and Ghias, K. Colorectal cancer carcinogenesis: a review of mechanisms. Cancer biology & medicine 13, 120-135, doi:10.28092/j.issn.2095-3941.2015.0103 (2016).
10 Pino, M. S. and Chung, D. C. The chromosomal instability pathway in colon cancer. Gastroenterology 138, 2059-2072, doi:10.1053/j.gastro.2009.12.065 (2010).
11 Geiersbach, K. B. and Samowitz, W. S. Microsatellite instability and colorectal cancer. Archives of pathology & laboratory medicine 135, 1269-1277, doi:10.5858/arpa.2011-0035-RA (2011).
12 Dahlin, A. M., Palmqvist, R., Henriksson, M. L., et al. The role of the CpG island methylator phenotype in colorectal cancer prognosis depends on microsatellite instability screening status. Clinical cancer research : an official journal of the American Association for Cancer Research 16, 1845-1855, doi:10.1158/1078-0432.Ccr-09-2594 (2010).
13 Toyota, M., Ahuja, N., Ohe-Toyota, M., et al. CpG island methylator phenotype in colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America 96, 8681-8686 (1999).
14 Zlobec, I., Bihl, M. P., Foerster, A., et al. The impact of CpG island methylator phenotype and microsatellite instability on tumour budding in colorectal cancer. Histopathology 61, 777-787, doi:10.1111/j.1365-2559.2012.04273.x (2012).
15 Kerr, E. M., Gaude, E., Turrell, F. K., et al. Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities. Nature 531, 110-113, doi:10.1038/nature16967 (2016).
16 Isella, C., Terrasi, A., Bellomo, S. E., et al. Stromal contribution to the colorectal cancer transcriptome. Nature genetics 47, 312-319, doi:10.1038/ng.3224 (2015).
17 Guinney, J., Dienstmann, R., Wang, X., et al. The consensus molecular subtypes of colorectal cancer. Nature medicine 21, 1350-1356, doi:10.1038/nm.3967 (2015).
18 Berg, K. C. G., Eide, P. W., Eilertsen, I. A., et al. Multi-omics of 34 colorectal cancer cell lines - a resource for biomedical studies. Molecular cancer 16, 116, doi:10.1186/s12943-017-0691-y (2017).
19 Dienstmann, R., Vermeulen, L., Guinney, J., et al. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nature reviews. Cancer 17, 268, doi:10.1038/nrc.2017.24 (2017).
20 CE., D. The classification of cancer of the rectum. Journal of Pathological Bacteriology 35, 323-332 (1932).
21 Sarma, D. P. Dukes' classification of rectal cancer. Southern medical journal 81, 407-408 (1988).
22 Lu, J., Zheng, C. H., Cao, L. L., et al. The effectiveness of the 8th American Joint Committee on Cancer TNM classification in the prognosis evaluation of gastric cancer patients: A comparative study between the 7th and 8th editions. European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology 43, 2349-2356, doi:10.1016/j.ejso.2017.09.001 (2017).
23 Chen, V. W., Hsieh, M. C., Charlton, M. E., et al. Analysis of stage and clinical/prognostic factors for colon and rectal cancer from SEER registries: AJCC and collaborative stage data collection system. Cancer 120 Suppl 23, 3793-3806, doi:10.1002/cncr.29056 (2014).
24 Shimoda, Y. and Watanabe, K. Contactins: emerging key roles in the development and function of the nervous system. Cell adhesion & migration 3, 64-70 (2009).
25 Bizzoca, A., Corsi, P. and Gennarini, G. The mouse F3/contactin glycoprotein: structural features, functional properties and developmental significance of its regulated expression. Cell adhesion & migration 3, 53-63 (2009).
26 Falk, J., Bonnon, C., Girault, J. A., et al. F3/contactin, a neuronal cell adhesion molecule implicated in axogenesis and myelination. Biology of the cell 94, 327-334 (2002).
27 Gennarini, G., Cibelli, G., Rougon, G., et al. The mouse neuronal cell surface protein F3: a phosphatidylinositol-anchored member of the immunoglobulin superfamily related to chicken contactin. The Journal of cell biology 109, 775-788 (1989).
28 Ranscht, B., Moss, D. J. and Thomas, C. A neuronal surface glycoprotein associated with the cytoskeleton. The Journal of cell biology 99, 1803-1813 (1984).
29 Yoshihara, Y., Kawasaki, M., Tamada, A., et al. Overlapping and differential expression of BIG-2, BIG-1, TAG-1, and F3: four members of an axon-associated cell adhesion molecule subgroup of the immunoglobulin superfamily. Journal of neurobiology 28, 51-69, doi:10.1002/neu.480280106 (1995).
30 Kamei, Y., Takeda, Y., Teramoto, K., et al. Human NB-2 of the contactin subgroup molecules: chromosomal localization of the gene (CNTN5) and distinct expression pattern from other subgroup members. Genomics 69, 113-119, doi:10.1006/geno.2000.6310 (2000).
31 Mimmack, M. L., Saito, H., Evans, G., et al. A novel splice variant of the cell adhesion molecule BIG-2 is expressed in the olfactory and vomeronasal neuroepithelia. Brain research. Molecular brain research 47, 345-350 (1997).
32 Mayor, S. and Riezman, H. Sorting GPI-anchored proteins. Nature reviews. Molecular cell biology 5, 110-120, doi:10.1038/nrm1309 (2004).
33 Osterhout, J. A., Stafford, B. K., Nguyen, P. L., et al. Contactin-4 mediates axon-target specificity and functional development of the accessory optic system. Neuron 86, 985-999, doi:10.1016/j.neuron.2015.04.005 (2015).
34 Zuko, A., Kleijer, K. T., Oguro-Ando, A., et al. Contactins in the neurobiology of autism. European journal of pharmacology 719, 63-74, doi:10.1016/j.ejphar.2013.07.016 (2013).
35 Kirov, G. CNVs in neuropsychiatric disorders. Human molecular genetics 24, R45-49, doi:10.1093/hmg/ddv253 (2015).
36 Torres, F., Barbosa, M. and Maciel, P. Recurrent copy number variations as risk factors for neurodevelopmental disorders: critical overview and analysis of clinical implications. Journal of medical genetics 53, 73-90, doi:10.1136/jmedgenet-2015-103366 (2016).
37 Oguro-Ando, A., Zuko, A., Kleijer, K. T. E., et al. A current view on contactin-4, -5, and -6: Implications in neurodevelopmental disorders. Molecular and cellular neurosciences 81, 72-83, doi:10.1016/j.mcn.2016.12.004 (2017).
38 Hansford, L. M., Smith, S. A., Haber, M., et al. Cloning and characterization of the human neural cell adhesion molecule, CNTN4 (alias BIG-2). Cytogenetic and genome research 101, 17-23, doi:10.1159/000073412 (2003).
39 Sjoblom, T., Jones, S., Wood, L. D., et al. The consensus coding sequences of human breast and colorectal cancers. Science (New York, N.Y.) 314, 268-274, doi:10.1126/science.1133427 (2006).
40 Manderson, E. N., Birch, A. H., Shen, Z., et al. Molecular genetic analysis of a cell adhesion molecule with homology to L1CAM, contactin 6, and contactin 4 candidate chromosome 3p26pter tumor suppressor genes in ovarian cancer. International journal of gynecological cancer : official journal of the International Gynecological Cancer Society 19, 513-525, doi:10.1111/IGC.0b013e3181a3cd38 (2009).
41 Ashktorab, H., Schaffer, A. A., Daremipouran, M., et al. Distinct genetic alterations in colorectal cancer. PloS one 5, e8879, doi:10.1371/journal.pone.0008879 (2010).
42 Masson, A. L., Talseth-Palmer, B. A., Evans, T. J., et al. Copy number variation in hereditary non-polyposis colorectal cancer. Genes 4, 536-555, doi:10.3390/genes4040536 (2013).
43 Yete, S., Pradhan, S. and Saranath, D. Single nucleotide polymorphisms in an Indian cohort and association of CNTN4, MMP2 and SNTB1 variants with oral cancer. Cancer genetics 214-215, 16-25, doi:10.1016/j.cancergen.2017.03.006 (2017).
44 Evenepoel, L., van Nederveen, F. H., Oudijk, L., et al. Expression of Contactin 4 Is Associated With Malignant Behavior in Pheochromocytomas and Paragangliomas. The Journal of clinical endocrinology and metabolism 103, 46-55, doi:10.1210/jc.2017-01314 (2018).
45 Barnea, G., Silvennoinen, O., Shaanan, B., et al. Identification of a carbonic anhydrase-like domain in the extracellular region of RPTP gamma defines a new subfamily of receptor tyrosine phosphatases. Molecular and cellular biology 13, 1497-1506 (1993).
46 Kastury, K., Ohta, M., Lasota, J., et al. Structure of the human receptor tyrosine phosphatase gamma gene (PTPRG) and relation to the familial RCC t(3;8) chromosome translocation. Genomics 32, 225-235, doi:10.1006/geno.1996.0109 (1996).
47 Tonks, N. K. Protein tyrosine phosphatases: from genes, to function, to disease. Nature reviews. Molecular cell biology 7, 833-846, doi:10.1038/nrm2039 (2006).
48 Bouyain, S. and Watkins, D. J. The protein tyrosine phosphatases PTPRZ and PTPRG bind to distinct members of the contactin family of neural recognition molecules. Proceedings of the National Academy of Sciences of the United States of America 107, 2443-2448, doi:10.1073/pnas.0911235107 (2010).
49 Bouyain, S. and Watkins, D. J. Identification of tyrosine phosphatase ligands for contactin cell adhesion molecules. Communicative & integrative biology 3, 284-286 (2010).
50 Mercati, O., Danckaert, A., Andre-Leroux, G., et al. Contactin 4, -5 and -6 differentially regulate neuritogenesis while they display identical PTPRG binding sites. Biology open 2, 324-334, doi:10.1242/bio.20133343 (2013).
51 Nikolaienko, R. M., Hammel, M., Dubreuil, V., et al. Structural Basis for Interactions Between Contactin Family Members and Protein-tyrosine Phosphatase Receptor Type G in Neural Tissues. The Journal of biological chemistry 291, 21335-21349, doi:10.1074/jbc.M116.742163 (2016).
52 Vazquez, A., Kamphorst, J. J., Markert, E. K., et al. Cancer metabolism at a glance. 129, 3367-3373, doi:10.1242/jcs.181016 %J Journal of Cell Science (2016).
53 Sebastian, S., Wilson, J. E., Mulichak, A., et al. Allosteric regulation of type I hexokinase: A site-directed mutational study indicating location of the functional glucose 6-phosphate binding site in the N-terminal half of the enzyme. Archives of biochemistry and biophysics 362, 203-210, doi:10.1006/abbi.1998.1043 (1999).
54 McGresham, M. S., Lovingshimer, M. and Reinhart, G. D. Allosteric regulation in phosphofructokinase from the extreme thermophile Thermus thermophilus. Biochemistry 53, 270-278, doi:10.1021/bi401402j (2014).
55 Jurica, M. S., Mesecar, A., Heath, P. J., et al. The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate. Structure (London, England : 1993) 6, 195-210 (1998).
56 Jeoung, N. H. Pyruvate Dehydrogenase Kinases: Therapeutic Targets for Diabetes and Cancers. Diabetes & metabolism journal 39, 188-197, doi:10.4093/dmj.2015.39.3.188 (2015).
57 Anderson, N. M., Mucka, P., Kern, J. G., et al. The emerging role and targetability of the TCA cycle in cancer metabolism. Protein & cell 9, 216-237, doi:10.1007/s13238-017-0451-1 (2018).
58 Bequette, B. J., Sunny, N. E., El-Kadi, S. W., et al. Application of stable isotopes and mass isotopomer distribution analysis to the study of intermediary metabolism of nutrients. Journal of animal science 84 Suppl, E50-59 (2006).
59 Sazanov, L. A. A giant molecular proton pump: structure and mechanism of respiratory complex I. Nature Reviews Molecular Cell Biology 16, 375, doi:10.1038/nrm3997 (2015).
60 Warburg, O., Wind, F. and Negelein, E. THE METABOLISM OF TUMORS IN THE BODY. The Journal of general physiology 8, 519-530 (1927).
61 Kim, J. W., Tchernyshyov, I., Semenza, G. L., et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell metabolism 3, 177-185, doi:10.1016/j.cmet.2006.02.002 (2006).
62 Viale, A., Pettazzoni, P., Lyssiotis, C. A., et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514, 628, doi:10.1038/nature13611 (2014).
63 Klepinin, A., Chekulayev, V., Timohhina, N., et al. Comparative analysis of some aspects of mitochondrial metabolism in differentiated and undifferentiated neuroblastoma cells. 46, 17-31, doi:10.1007/s10863-013-9529-5 (2014).
64 DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G., et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell metabolism 7, 11-20, doi:10.1016/j.cmet.2007.10.002 (2008).
65 Rodriguez-Enriquez, S., Torres-Marquez, M. E. and Moreno-Sanchez, R. Substrate oxidation and ATP supply in AS-30D hepatoma cells. Archives of biochemistry and biophysics 375, 21-30, doi:10.1006/abbi.1999.1582 (2000).
66 Chekulayev, V., Mado, K., Shevchuk, I., et al. Metabolic remodeling in human colorectal cancer and surrounding tissues: alterations in regulation of mitochondrial respiration and metabolic fluxes. Biochemistry and biophysics reports 4, 111-125, doi:10.1016/j.bbrep.2015.08.020 (2015).
67 Zong, W. X., Rabinowitz, J. D. and White, E. Mitochondria and Cancer. Molecular cell 61, 667-676, doi:10.1016/j.molcel.2016.02.011 (2016).
68 Schell, J. C., Olson, K. A., Jiang, L., et al. A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. Molecular cell 56, 400-413, doi:10.1016/j.molcel.2014.09.026 (2014).
69 Corbet, C. and Feron, O. Cancer cell metabolism and mitochondria: Nutrient plasticity for TCA cycle fueling. Biochimica et biophysica acta. Reviews on cancer 1868, 7-15, doi:10.1016/j.bbcan.2017.01.002 (2017).
70 Yang, C., Ko, B., Hensley, C. T., et al. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Molecular cell 56, 414-424, doi:10.1016/j.molcel.2014.09.025 (2014).
71 Mishra, P. and Chan, D. C. Metabolic regulation of mitochondrial dynamics. The Journal of cell biology 212, 379-387, doi:10.1083/jcb.201511036 (2016).
72 Mishra, P. and Chan, D. C. Mitochondrial dynamics and inheritance during cell division, development and disease. Nature reviews. Molecular cell biology 15, 634-646, doi:10.1038/nrm3877 (2014).
73 Watanabe, T., Chuma, S., Yamamoto, Y., et al. MITOPLD is a mitochondrial protein essential for nuage formation and piRNA biogenesis in the mouse germline. Developmental cell 20, 364-375, doi:10.1016/j.devcel.2011.01.005 (2011).
74 Cogliati, S., Frezza, C., Soriano, M. E., et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155, 160-171, doi:10.1016/j.cell.2013.08.032 (2013).
75 Waterham, H. R., Koster, J., van Roermund, C. W., et al. A lethal defect of mitochondrial and peroxisomal fission. The New England journal of medicine 356, 1736-1741, doi:10.1056/NEJMoa064436 (2007).
76 Taguchi, N., Ishihara, N., Jofuku, A., et al. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. The Journal of biological chemistry 282, 11521-11529, doi:10.1074/jbc.M607279200 (2007).
77 Cribbs, J. T. and Strack, S. Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO reports 8, 939-944, doi:10.1038/sj.embor.7401062 (2007).
78 Chang, C. R. and Blackstone, C. Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Annals of the New York Academy of Sciences 1201, 34-39, doi:10.1111/j.1749-6632.2010.05629.x (2010).
79 Chou, C. H., Lin, C. C., Yang, M. C., et al. GSK3beta-mediated Drp1 phosphorylation induced elongated mitochondrial morphology against oxidative stress. PloS one 7, e49112, doi:10.1371/journal.pone.0049112 (2012).
80 Guo, Y., Wang, Z., Qin, X., et al. Enhancing fatty acid utilization ameliorates mitochondrial fragmentation and cardiac dysfunction via rebalancing optic atrophy 1 processing in the failing heart. Cardiovascular research 114, 979-991, doi:10.1093/cvr/cvy052 (2018).
81 Rambold, A. S., Kostelecky, B., Elia, N., et al. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proceedings of the National Academy of Sciences of the United States of America 108, 10190-10195, doi:10.1073/pnas.1107402108 (2011).
82 Lee, J. Y., Kapur, M., Li, M., et al. MFN1 deacetylation activates adaptive mitochondrial fusion and protects metabolically challenged mitochondria. Journal of cell science 127, 4954-4963, doi:10.1242/jcs.157321 (2014).
83 Qiu, J., Huang, L., Davie, A. J., et al. A comparison of the effects of endurance training on alternate days and on consecutive four days each week for eight weeks on the abundance of PGC-1alpha, CaMKII, NRF-1, mtTFA and COXIV proteins in rat skeletal muscle. Journal of strength and conditioning research, doi:10.1519/jsc.0000000000002407 (2017).
84 Yu, S. B. and Pekkurnaz, G. Mechanisms Orchestrating Mitochondrial Dynamics for Energy Homeostasis. Journal of molecular biology 430, 3922-3941, doi:10.1016/j.jmb.2018.07.027 (2018).
85 Mastropasqua, F., Girolimetti, G. and Shoshan, M. PGC1alpha: Friend or Foe in Cancer? Genes 9, doi:10.3390/genes9010048 (2018).
86 2013年台灣大學醫學檢驗暨生物技術學系李景行碩士論文.
87 2015年台灣大學醫學檢驗暨生物技術學系江紹瑜碩士論文.
88 2017年台灣大學醫學檢驗暨生物技術學系蕭聿昕碩士論文.
89 Wang, J.-F. and Dai, D.-Q. Metastatic suppressor genes inactivated by aberrant methylation in gastric cancer. World journal of gastroenterology 13, 5692-5698, doi:10.3748/wjg.v13.i43.5692 (2007).
90 Xiao, J., Lee, S. T., Xiao, Y., et al. PTPRG inhibition by DNA methylation and cooperation with RAS gene activation in childhood acute lymphoblastic leukemia. International journal of cancer 135, 1101-1109, doi:10.1002/ijc.28759 (2014).
91 Steven, A., Heiduk, M., Recktenwald, C. V., et al. Colorectal Carcinogenesis: Connecting K-RAS-Induced Transformation and CREB Activity In Vitro and In Vivo. Molecular cancer research : MCR 13, 1248-1262, doi:10.1158/1541-7786.Mcr-14-0590 (2015).
92 Ploumi, C., Daskalaki, I. and Tavernarakis, N. Mitochondrial biogenesis and clearance: a balancing act. The FEBS journal 284, 183-195, doi:10.1111/febs.13820 (2017).
93 Pletjushkina, O. Y., Lyamzaev, K. G., Popova, E. N., et al. Effect of oxidative stress on dynamics of mitochondrial reticulum. Biochimica et biophysica acta 1757, 518-524, doi:10.1016/j.bbabio.2006.03.018 (2006).
94 Shu, S. T., Sugimoto, Y., Liu, S., et al. Function and regulatory mechanisms of the candidate tumor suppressor receptor protein tyrosine phosphatase gamma (PTPRG) in breast cancer cells. Anticancer research 30, 1937-1946 (2010).
95 Gong, S., Chen, Y., Meng, F., et al. Roflumilast enhances cisplatin-sensitivity and reverses cisplatin-resistance of ovarian cancer cells via cAMP/PKA/CREB-FtMt signalling axis. Cell proliferation 51, e12474, doi:10.1111/cpr.12474 (2018).
96 Hu, X. M., Zhang, H., Xu, H., et al. Chemokine receptor CXCR4 regulates CaMKII/CREB pathway in spinal neurons that underlies cancer-induced bone pain. Scientific reports 7, 4005, doi:10.1038/s41598-017-04198-3 (2017).
97 Steven, A. and Seliger, B. Control of CREB expression in tumors: from molecular mechanisms and signal transduction pathways to therapeutic target. Oncotarget 7, 35454-35465, doi:10.18632/oncotarget.7721 (2016).
98 van der Sligte, N. E., Kampen, K. R., ter Elst, A., et al. Essential role for cyclic-AMP responsive element binding protein 1 (CREB) in the survival of acute lymphoblastic leukemia. Oncotarget 6, 14970-14981, doi:10.18632/oncotarget.3911 (2015).
99 Oh, K. J., Han, H. S., Kim, M. J., et al. CREB and FoxO1: two transcription factors for the regulation of hepatic gluconeogenesis. BMB reports 46, 567-574 (2013).
100 Babbar, M., Huang, Y., An, J., et al. CHTM1, a novel metabolic marker deregulated in human malignancies. Oncogene 37, 2052-2066, doi:10.1038/s41388-017-0051-9 (2018).
101 Liang, B., Li, C. and Zhao, J. Identification of key pathways and genes in colorectal cancer using bioinformatics analysis. Medical oncology (Northwood, London, England) 33, 111, doi:10.1007/s12032-016-0829-6 (2016).
102 Romero, N., Swain, P. M. and Kam, Y. Metabolic remodeling in human colorectal cancer and surrounding tissues: alterations in regulation of mitochondrial respiration and metabolic fluxes., (Cell Analysis Division, Agilent Technologies, Lexington, MA, AACR, 2018).
103 Weinberg, F., Hamanaka, R., Wheaton, W. W., et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. 107, 8788-8793, doi:10.1073/pnas.1003428107 %J Proceedings of the National Academy of Sciences (2010).
104 Lane, A. N. and Fan, T. W. NMR-based Stable Isotope Resolved Metabolomics in systems biochemistry. Archives of biochemistry and biophysics 628, 123-131, doi:10.1016/j.abb.2017.02.009 (2017).
105 Vellinga, T. T., Borovski, T., de Boer, V. C., et al. SIRT1/PGC1alpha-Dependent Increase in Oxidative Phosphorylation Supports Chemotherapy Resistance of Colon Cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 21, 2870-2879, doi:10.1158/1078-0432.Ccr-14-2290 (2015).
106 De Luca, A., Fiorillo, M., Peiris-Pages, M., et al. Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells. Oncotarget 6, 14777-14795, doi:10.18632/oncotarget.4401 (2015).
107 Meyer, N., Zielke, S., Michaelis, J. B., et al. AT 101 induces early mitochondrial dysfunction and HMOX1 (heme oxygenase 1) to trigger mitophagic cell death in glioma cells. Autophagy 14, 1693-1709, doi:10.1080/15548627.2018.1476812 (2018).
108 Singh, S. P., Bellner, L., Vanella, L., et al. Downregulation of PGC-1alpha Prevents the Beneficial Effect of EET-Heme Oxygenase-1 on Mitochondrial Integrity and Associated Metabolic Function in Obese Mice. Journal of nutrition and metabolism 2016, 9039754, doi:10.1155/2016/9039754 (2016).
109 Greene, N. P., Lee, D. E., Brown, J. L., et al. Mitochondrial quality control, promoted by PGC-1alpha, is dysregulated by Western diet-induced obesity and partially restored by moderate physical activity in mice. Physiological reports 3, doi:10.14814/phy2.12470 (2015).
110 Wai, T. and Langer, T. Mitochondrial Dynamics and Metabolic Regulation. Trends in endocrinology and metabolism: TEM 27, 105-117, doi:10.1016/j.tem.2015.12.001 (2016).
111 Fuhrmann, D. C. and Brune, B. Mitochondrial composition and function under the control of hypoxia. Redox biology 12, 208-215, doi:10.1016/j.redox.2017.02.012 (2017).
112 Zhou, H., Zhang, Y., Hu, S., et al. Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis. Journal of pineal research 63, doi:10.1111/jpi.12413 (2017).
113 Palikaras, K. and Tavernarakis, N. Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Experimental gerontology 56, 182-188, doi:10.1016/j.exger.2014.01.021 (2014).
114 Zhou, H., Du, W., Li, Y., et al. Effects of melatonin on fatty liver disease: The role of NR4A1/DNA-PKcs/p53 pathway, mitochondrial fission, and mitophagy. Journal of pineal research 64, doi:10.1111/jpi.12450 (2018).
115 Wang, Y., Sun, X., Ji, K., et al. Sirt3-mediated mitochondrial fission regulates the colorectal cancer stress response by modulating the Akt/PTEN signalling pathway. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 105, 1172-1182, doi:10.1016/j.biopha.2018.06.071 (2018).
116 Qian, J., Fang, D., Lu, H., et al. Tanshinone IIA promotes IL2-mediated SW480 colorectal cancer cell apoptosis by triggering INF2-related mitochondrial fission and activating the Mst1-Hippo pathway. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 108, 1658-1669, doi:10.1016/j.biopha.2018.09.170 (2018).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71476-
dc.description.abstract大腸直腸癌在世界癌症死亡率排名位於前三名,顯示需要更多研究了解此疾病。先前本實驗室研究於人類第三號染色體3p26.3 鑑定Contactin 4 (CNTN4) 於大腸直腸癌可能扮演抑癌基因的角色。於HCT116細胞表現CNTN4可抑制細胞增生、固著及非固著依賴性胞落形成的能力;在動物實驗則顯示CNTN4可抑制HCT116細胞於裸鼠皮下腫瘤的生成及血管新生。目前對於CNTN4調控的抑癌機轉尚未明確,先前研究指出CNTN4可能透過結合蛋白PTPRG進行訊息調控路徑,因此本論文先利用實驗室收集51對大腸直腸癌檢體檢測PTPRG,結果顯示在大腸直腸癌PTPRG基因表現與配對正常黏膜組織相比無異;同時以免疫共沉澱法證實PTPRG與CNTN4的交互作用。本論文進一步利用人類磷酸化蛋白激酶晶片檢測單一穩定表現CNTN4之HCT116細胞株,探討可能受PTPRG影響的蛋白磷酸化機制,結果顯示HCT116 細胞表現CNTN4後可大幅降低CREB磷酸化;以西方點墨法亦確認CREB及其上游分子Erk1/2,磷酸化程度明顯和CNTN4表現量呈負相關;當以siRNA抑制CNTN4表現,可恢復CREB及Erk1/2之磷酸化。另外,結合TCGA及GSEA進行生物資訊分析,其結果顯示氧化磷酸化(OXPHOS)、三羧酸循環(TCA cycle)及丙酮酸代謝(Pyruvate metabolism)之能量代謝相關路徑與CNTN4表現呈現負相關。為探討CNTN4是否藉由調控能量代謝抑制HCT116細胞生長,以海馬生物能量測定儀檢測細胞能量代謝狀態,結果顯示CNTN4表現於HCT116細胞明顯弱化粒線體功能運作,後續以西方點墨法及即時定量聚合酶連鎖反應確認HCT116 細胞表現CNTN4可明顯降低粒線體生合成相關的重要轉錄因子PGC-1a表現,而以siRNA抑制CNTN4表現則可恢復PGC-1a表現,同時也觀察到PGC-1a調控下游TFAM表現量亦受CNTN4抑制。利用流式細胞儀及即時定量聚合酶連鎖反應確認HCT116 細胞表現CNTN4後大幅降低粒線體質量及粒線體DNA拷貝數,以siRNA抑制CNTN4表現後,則可恢復之。利用螢光染色觀察粒線體形態變化,當HCT116 細胞表現CNTN4可出現似粒線體分裂聚集現象。綜合以上,我們先確認CNTN4表現能抑制HCT116細胞的CREB及其上游Erk1/2之磷酸化,並且藉由生物資訊分析假設能量代謝可能為CNTN4影響的重要路徑;再以海馬生物能量測定結果支持表現CNTN4可弱化粒線體功能,而其可能是透過抑制CREB磷酸化而減少下游PGC-1a表現,進而影響粒線體生合成及降低粒線體DNA拷貝數之機制。zh_TW
dc.description.abstractColorectal cancer (CRC) is one of the top three leading causes of cancer death in the world. Although the annual incidence due to timely screening has been decreased in these years, its annual mortality keeps the highest among human cancers indicating it still needs more study. Previously, we have identified Contactin 4 (CNTN4) as a novel tumor suppressor gene located at chromosome 3p26.3, which is lost in CRC tumors at a high frequency. Ectopic expression of CNTN4 in HCT116 cells could reduce cell proliferation, anchorage-dependent and anchorage-independent colony formation in vitro. Furthermore, CNTN4 expression could inhibit the tumorigenesis of subcutaneous xenograft and tumor angiogenesis in nude mice. However, the mechanism of CNTN4 is still not clear. It showed CNTN4 might interact with PTPRG to modulate cell signaling pathway. Therefore, we detected and observed the PTPRG gene expression upregulation in 51 pair CRC primary tumor when compaired with normal mucosa. We also confirmed the interaction between CNTN4 and PTPRG by co-immunoprecipitation. In the study, by Human Phospho-Kinase Array, we found ectopic expression of CNTN4 in HCT116 cells could obviously reduce CREB phosphorylation compared with HCT116/Mock and the downregulation of phospho-CREB as well as its upstream regulation, phospho-Erk1/2 was further observed by Western Blot. Additionally, by knockdown of CNTN4 expression with siRNA, the phosphorylation of CREB and ERK1/2 could be restored. On the other hand, we utilized thecolorectal adenocarcinoma dataset of TCGA and GSEA software to perform bioinformatic analysis, and the result showed that CNTN4 expression is nagtively correlated with energy metabolism pathway, including OXPHOS, TCA cycle and pyruvate metabolism. To investigate whether CNTN4 inhibits HCT116 cell proliferation through modulating metabolic activity, we detected energy metabolic status of HCT116 cells expressing CNTN4 by Seahorse analysis. The result showed ectopic expression of CNTN4 decreased mitochondrial function. In addition, we found CNTN4 expression in HCT116 cells reduced PGC-1a expression, an important transcription factor affecting the synthesis of mitochondria, and the phenomen could be restored by CNTN4 knockdown with siRNA. Futhermore, TFAM, a target gene of PGC-1a, were also reduced by CNTN4 expression. Finally, we found ectopic expression of CNTN4 in HCT116 cells reduced mitochondrial mass and mitochondrial DNA. In the cells, the mitochondrial morphology became punctated cluster, which is associated with mitochondrial fission.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:01:26Z (GMT). No. of bitstreams: 1
ntu-108-R05424023-1.pdf: 5042140 bytes, checksum: 36ad7e5a066f03590883331ef95077bd (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iv
縮寫對照表 vi
圖目錄 xiv
表目錄 xv
一、緒論 1
1. 大腸直腸癌 1
1.1 簡介 1
1.2生成機制 2
1.2.1 染色體的不穩定性 (Chromosomal instability, CIN) 2
1.2.2 微衛星不穩定性 (Microsatellite instability, MSI) 2
1.2.3 表觀基因變異(epigenetic alterations) 2
1.3 大腸直腸癌分子特徵與標靶藥物的綜合分類系統 3
1.4 癌症分期 4
1.4.1 Dukes分期系統 4
1.4.2 TNM分期系統 5
1.4.3 AJCC/UICC分期系統 6
2. Contactin 4 (CNTN4) 7
2.1 Contactin家族與CNTN4簡介 7
2.2 CNTN4相關研究 8
2.3 CNTN4與癌症相關研究 8
3. Protein Tyrosine Phosphatase Receptor gamma (PTPRG) 10
3.1 PTPRG簡介 10
3.2 PTPRG與CNTN4相關研究 10
4. 細胞能量代謝 12
4.1 糖解作用 Glycolysis 12
4.2 丙酮酸脫羧反應 Pyruvate oxidative decarboxylation 12
4.3 三羧酸循環 TCA cycle 13
4.4 電子傳遞鏈 Electron Transport Chain 13
4.5 癌症細胞能量代謝變化 13
4.5.1 Warburg effect 13
4.5.2 粒線體能量代謝 14
5. 粒線體動態平衡 16
5.1 融合Fusion 16
5.1.1 外膜融合 16
5.1.2 內膜融合 16
5.2 分裂Fission 17
5.2.1 外膜分裂 17
5.2.2 內膜分裂 17
5.3 粒線體生合成 Mitochondrial biogenesis 18
6. 實驗室先前CNTN4相關研究 19
6.1 第三號染色體失異合性檢測 19
6.2 CNTN4抑癌功能之確認 19
6.3 CNTN4抑制大腸直腸癌細胞表現促血管新生因子 urokinase-type plasminogen activator (uPA) 之確認 19
6.4 溶解型CNTN4抑癌功能之確認 20
二、研究目標 21
三、材料與方法 22
1. 細胞培養 22
2. 利用siRNA抑制CNTN4表現 23
3. 蛋白質的抽取及定量 23
4. 西方墨點法 24
5. DNA 萃取 25
6. RNA 萃取 26
7. 反轉錄合成互補 DNA 26
8. 免疫共沉澱法 27
9. 即時定量聚合酶連鎖反應 27
10. 海馬生物能量測定儀 28
11. 粒線體形態與總量分析 30
12. 人類磷酸化蛋白激酶晶片檢測 31
13. 公開資料庫之數據分析 31
14. 統計 31
四、研究結果 32
1. 探討PTPRG基因於大腸直腸癌病患腫瘤之表現 32
2. 利用免疫共沉澱法驗證CNTN4與PTPRG的蛋白質交互作用 32
3. 利用磷酸化蛋白激酶晶片檢測於HCT116細胞表現CNTN4之影響 33
4. 探討於HCT116表現CNTN4對於磷酸化蛋白激酶之調控 33
5. 探討HCT116表現CNTN4對於CREB其上游路徑之調控 34
6. 利用TCGA及GSEA 軟體分析CNTN4與生化途徑相關性 34
7. 利用海馬生物能量測定儀檢測於HCT116細胞表現CNTN4可抑制粒線體能量代謝活性 35
8. 利用TCGA分析大腸直腸癌腫瘤之CNTN4和能量代謝途徑基因之相關性 36
9. 探討於HCT116表現CNTN4細胞對於能量代謝途徑的基因變化 36
10. 探討於HCT116表現CNTN4細胞對CREB調控PGC-1及其下游TFAM變化 37
11. 利用粒線體螢光染色探討CNTN4表現造成HCT116細胞粒線體基因減少 38
12. 利用粒線體螢光染色探討CNTN4表現造成HCT116細胞粒線體質量減少 38
13. 利用粒線體螢光染色探討CNTN4表現造成HCT116細胞粒線體形態改變 39
五、討論 40
圖 46
表 75
參考資料 86
dc.language.isozh-TW
dc.subject粒線體zh_TW
dc.subject能量代謝zh_TW
dc.subjectCREB磷酸化zh_TW
dc.subjectContactin 4zh_TW
dc.subject大腸直腸癌zh_TW
dc.subjectmitochondriaen
dc.subjectenergy metabolismen
dc.subjectcolorectal canceren
dc.subjectCREB phosphorylationen
dc.subjectContactin 4en
dc.title探討Contactin 4於大腸直腸癌對細胞能量代謝的影響zh_TW
dc.titleStudy of Contactin 4 – mediated changes in cellular energy metabolism in colorectal canceren
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇剛毅(Kang-Yi Su),郭靜穎(Ching-Ying Kuo),潘思樺(Szu-Hua Pan),張育嘉(Yu-Jia Chang)
dc.subject.keyword大腸直腸癌,Contactin 4,CREB磷酸化,能量代謝,粒線體,zh_TW
dc.subject.keywordcolorectal cancer,Contactin 4,CREB phosphorylation,energy metabolism,mitochondria,en
dc.relation.page94
dc.identifier.doi10.6342/NTU201900417
dc.rights.note有償授權
dc.date.accepted2019-02-11
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
4.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved