Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71470
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇國棟
dc.contributor.authorTing-Jui Changen
dc.contributor.author張庭瑞zh_TW
dc.date.accessioned2021-06-17T06:01:19Z-
dc.date.available2029-12-31
dc.date.copyright2019-02-14
dc.date.issued2019
dc.date.submitted2019-01-31
dc.identifier.citation[1] J. W. Goodman, Speckle phenomena in optics: theory and applications: Roberts and Company Publishers, 2007.
[2] A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” Journal of biomedical optics, vol. 15, no. 6, pp. 066030, 2010.
[3] A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” Journal of Cerebral Blood Flow & Metabolism, vol. 21, no. 3, pp. 195-201, 2001.
[4] P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Optics letters, vol. 31, no. 12, pp. 1824-1826, 2006.
[5] S. Roelandt, Y. Meuret, A. Jacobs, K. Willaert, P. Janssens, H. Thienpont, and G. Verschaffelt, “Human speckle perception threshold for still images from a laser projection system,” Optics express, vol. 22, no. 20, pp. 23965-23979, 2014.
[6] N. E. Yu, J. W. Choi, H. Kang, D.-K. Ko, S.-H. Fu, J.-W. Liou, A. H. Kung, H. J. Choi, B. J. Kim, and M. Cha, “Speckle noise reduction on a laser projection display via a broadband green light source,” Optics express, vol. 22, no. 3, pp. 3547-3556, 2014.
[7] J. G. Manni, and J. W. Goodman, “Versatile method for achieving 1% speckle contrast in large-venue laser projection displays using a stationary multimode optical fiber,” Optics express, vol. 20, no. 10, pp. 11288-11315, 2012.
[8] D. S. Mehta, D. N. Naik, R. K. Singh, and M. Takeda, “Laser speckle reduction by multimode optical fiber bundle with combined temporal, spatial, and angular diversity,” Applied optics, vol. 51, no. 12, pp. 1894-1904, 2012.
[9] B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nature photonics, vol. 6, no. 6, pp. 355, 2012.
[10] B. Redding, M. A. Choma, and H. Cao, “Spatial coherence of random laser emission,” Optics letters, vol. 36, no. 17, pp. 3404-3406, 2011.
[11] M. N. Akram, V. Kartashov, and Z. Tong, “Speckle reduction in line-scan laser projectors using binary phase codes,” Optics letters, vol. 35, no. 3, pp. 444-446, 2010.
[12] J. I. Trisnadi, “Hadamard speckle contrast reduction,” Optics letters, vol. 29, no. 1, pp. 11-13, 2004.
[13] T. Stangner, H. Zhang, T. Dahlberg, K. Wiklund, and M. Andersson, “Step-by-step guide to reduce spatial coherence of laser light using a rotating ground glass diffuser,” Applied optics, vol. 56, no. 19, pp. 5427-5435, 2017.
[14] L. Wang, T. Tschudi, T. Halldorsson, and P. R. Petursson, “Speckle reduction in laser projection systems by diffractive optical elements,” Applied optics, vol. 37, no. 10, pp. 1770-1775, 1998.
[15] Q.-L. Deng, B.-S. Lin, P.-J. Wu, K.-Y. Chiu, P.-L. Fan, and C.-Y. Chen, “A hybrid temporal and spatial speckle-suppression method for laser displays,” Optics Express, vol. 21, no. 25, pp. 31062-31071, 2013.
[16] X. Chen, Ø. Svensen, and M. N. Akram, “Speckle reduction in laser projection using a dynamic deformable mirror,” Optics express, vol. 22, no. 9, pp. 11152-11166, 2014.
[17] M. N. Akram, Z. Tong, G. Ouyang, X. Chen, and V. Kartashov, “Laser speckle reduction due to spatial and angular diversity introduced by fast scanning micromirror,” Applied optics, vol. 49, no. 17, pp. 3297-3304, 2010.
[18] D.-K. Yang, Fundamentals of liquid crystal devices: John Wiley & Sons, 2014.
[19] K.-H. Chang, Y. Shiraishi, N. Toshima, S. Kobayashi, H. Furue, and L.-C. Chien, '54‐1: Laser Speckle Reduction using Nanoparticle‐Embedded Liquid Crystals.' pp. 804-807, 2017.
[20] H. Ishikawa, A. Shibase, W. Weng, M. Ono, and H. Furue, “Reduction of laser speckle noise by using particle-dispersed liquid crystals,” Molecular Crystals and Liquid Crystals, vol. 646, no. 1, pp. 93-98, 2017.
[21] J.-H. Lin, S.-C. Chang, Y.-H. Li, C.-Y. Chien, C.-H. Chen, Y.-C. Lin, J.-J. Wu, S.-Y. Tsay, and Y.-H. Chen, “Investigation of laser speckle noise suppression by using polymer-stabilized liquid crystals within twisted nematic cell,” Applied Physics Express, vol. 10, no. 3, pp. 031701, 2017.
[22] H. Furue, A. Terashima, M. Shirao, Y. Koizumi, and M. Ono, “Control of laser speckle noise using liquid crystals,” Japanese Journal of Applied Physics, vol. 50, no. 9S2, pp. 09NE14, 2011.
[23] S.-L. Hou, W.-K. Choi, and G.-D. J. Su, “Ultra-bright heads-up displays using a method of projected color images by combination of LEDs and polymer-dispersed liquid crystals,” Journal of Display Technology, vol. 10, no. 3, pp. 228-234, 2014.
[24] H. Furue, Y. Sugimoto, K. Iwami, W. Weng, and M. Ono, “Control of Laser Speckle Noise by Using Polymer-Dispersed LC,” Molecular Crystals and Liquid Crystals, vol. 612, no. 1, pp. 245-250, 2015.
[25] I. Dierking, “Polymer network–stabilized liquid crystals,” Advanced Materials, vol. 12, no. 3, pp. 167-181, 2000.
[26] R. R. Deshmukh, and A. K. Jain, “Effect of anti-parallel and twisted alignment techniques on various propertiesof polymer stabilised liquid crystal (PSLC) films,” Liquid Crystals, vol. 43, no. 4, pp. 436-447, 2016.
[27] W.-K. Choi, S.-L. Hou, J.-Y. Chen, G.-D. J. Su, and Y.-M. Li, “Fast-response & Polarization-independent Optical Shutter Using Nano-PDLC Inside a Fabry-Perot Cavity,” Molecular Crystals and Liquid Crystals, vol. 612, no. 1, pp. 232-237, 2015.
[28] H. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Applied Physics Letters, vol. 83, no. 8, pp. 1515-1517, 2003.
[29] D. Andrienko, “Introduction to liquid crystals,” Journal of Molecular Liquids, 2018.
[30] “http://faculty.chem.queensu.ca/people/faculty/lemieux/Research.asp.”
[31] P. J. Collings, and M. Hird, Introduction to liquid crystals: chemistry and physics: CRC Press, 2017.
[32] B. E. Saleh, M. C. Teich, and B. E. Saleh, Fundamentals of photonics: Wiley New York, 1991.
[33] S. Ohta, S. Inasawa, and Y. Yamaguchi, “Size control of phase‐separated liquid crystal droplets in a polymer matrix based on the phase diagram,” Journal of Polymer Science Part B: Polymer Physics, vol. 50, no. 12, pp. 863-869, 2012.
[34] R. B. Akins, and J. L. West, 'Effect of thickness on PDLC electro-optics.' pp. 280-290.
[35] J. L. West, “Phase separation of liquid crystals in polymers,” Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, vol. 157, no. 1, pp. 427-441, 1988.
[36] “Data Sheet Licristal® E7, Merck KGaA, Germany, 2001..”
[37] “Data Sheet NOA65, Norland Products Inc., Cranbury, 1960..”
[38] “Data Sheet NOA81, Norland Products Inc., Cranbury, 1960..”
[39] 'PDMS,' https://www.sigmaaldrich.com/catalog/product/aldrich/761036?lang=en®ion=TW.
[40] 'PEDOT:PSS,' https://www.sigmaaldrich.com/catalog/product/aldrich/655201?lang=en®ion=TW.
[41] H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Optics communications, vol. 247, no. 1-3, pp. 101-106, 2005.
[42] S. Xu, Y. Li, Y. Liu, J. Sun, H. Ren, and S.-T. Wu, “Fast-response liquid crystal microlens,” Micromachines, vol. 5, no. 2, pp. 300-324, 2014.
[43] H. K. Hong, J. Yoon, and M. Lim, “Analysis of the dependence of optical response time of liquid‐crystal displays on the viewing direction,” Journal of the Society for Information Display, vol. 16, no. 10, pp. 1063-1068, 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71470-
dc.description.abstract傳統減少雷射光斑方式有好幾種,有一部分會產生不必要的震動於系統中,有一部分的系統結構較為複雜,還有另一部分會損失部分的光造成能量的損失。在這篇論文中,我們提出利用菲涅爾型奈米尺寸之聚合物散射型液晶透鏡於減少雷射光斑。此方法優點為整個系統構造較為精簡並且當元件處於減少雷射光斑的狀態時擁有較高的穿透率。此研究中,我們從設計構造和研究方法著手。接著介紹我們所使用的製程材料和製程步驟,其中包精密加工、翻模步驟、導電層之旋轉塗佈和菲涅爾型奈米尺寸之聚合物散射型液晶透鏡之組裝,各細節於論文中都予以詳細介紹。之後我們探討所設計菲涅爾型奈米尺寸之聚合物散射型液晶透鏡之特性,其中包含穿透率對電壓曲線和反應時間。最後我們利用此菲涅爾型奈米尺寸之聚合物散射型液晶透鏡於減少雷射光斑並且分析於實驗中所得到的圖片數據。zh_TW
dc.description.abstractIn some traditional speckle noise reduction technologies, some of them may engender unwanted vibrating because of the mechanical moving part in the system, some of them may have complicated structure, others may lose an amount of light. In this thesis, we propose Fresnel-patterned nano-sized PDLC lens to achieve speckle noise reduction, which is a liquid crystal based technology. It provides a compact way to conduct speckle noise reduction with high transparency when the film is on the working state of speckle noise reduction. In this research, we start from our design and methods. Then, we talk about materials we used, calculations of speckle noise and fabrication process, including Precision Machining, replication process, spin coating of conductive layer and assembly of nano-sized PDLC lens. After that, we investigate the characteristics of our designed nano-sized PDLC lens, including transmittance-voltage curve and response time. Finally, we utilize our Fresnel-patterned nano-sized PDLC lens for speckle noise reduction and analyze the pictures and data we got from the experiment.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:01:19Z (GMT). No. of bitstreams: 1
ntu-108-R04941038-1.pdf: 4614077 bytes, checksum: ef720fa5ccc1585ac421f837650394b7 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員審定書………………………………………………………………………#
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLE x
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Liquid Crystal 3
1.2.1 Types of Liquid Crystal 4
1.2.2 Alignment of Liquid Crystal 6
1.2.3 Physical Properties of Liquid Crystals 7
1.3 Liquid crystals/Polymer Composites 10
1.3.1 Polymer Stabilized Liquid Crystal (PSLC) 11
1.3.2 Polymer Dispersed Liquid Crystal (PDLC) 12
1.3.3 Nano-sized Polymer Dispersed Liquid Crystal (Nano-Sized PDLC) 13
1.4 Laser speckle 14
Chapter 2 Materials and Experimental Methods 16
2.1 Materials 16
2.1.1 Liquid crystal 16
2.1.2 NOA65 17
2.1.3 NOA81 18
2.1.4 Polydimethylsiloxane (PDMS) 20
2.1.5 PEDOT:PSS 21
2.2 Nano-Sized PDLC Lens 23
2.3 Fresnel Pattern Design 24
2.4 Fresnel Patterned Nano-Sized PDLC Lens 26
2.5 Calculations of Speckle Noise 27
Chapter 3 Fabrication Process 29
3.1 Fresnel Pattern Manufacturing 29
3.2 PDMS Mold of Fresnel Pattern Structure 31
3.3 NOA 81 Fresnel Pattern Structure on Glass Substrate 32
3.4 Transparent Conductive Layer on Fresnel Pattern Structure 35
3.5 Assembly of Nano-Sized PDLC Lens Film 35
Chapter 4 The Characteristics of Nano-Sized PDLC Lens 38
4.1 Transmittance-Voltage Curve 38
4.1.1 Experimental Setup for Transmittance-Voltage Curve 39
4.1.2 Experimental Result of Transmittance-Voltage Curve 40
4.2 Response Time Measurement 41
4.2.1 Experimental Setup for Response Time Measurement 42
4.2.2 Experimental Result of Response Time 43
Chapter 5 Experimental Results 48
5.1 Measurement of Speckle Contrast 48
5.2 Reduction Rate (α) versus Applied Voltage 53
5.3 Images of Speckle Pattern 54
Chapter 6 Conclusions 57
REFERENCES 59
dc.language.isoen
dc.subject菲涅爾透鏡zh_TW
dc.subject奈米尺寸之聚合物型液晶zh_TW
dc.subject雷射光斑zh_TW
dc.subject聚合物散射型液晶透鏡zh_TW
dc.subject液晶zh_TW
dc.subjectspeckle noiseen
dc.subjectnano-sized PDLCen
dc.subjectPrecision Machiningen
dc.subjectPDLC lensen
dc.title利用菲涅爾型奈米尺寸之聚合物散射型液晶透鏡於減少雷射光斑zh_TW
dc.titleSpeckle Noise Reduction by Using Fresnel-Patterned Nano-Sized Polymer Dispersed Liquid Crystal Lensen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王倫,李翔傑
dc.subject.keyword液晶,聚合物散射型液晶透鏡,菲涅爾透鏡,奈米尺寸之聚合物型液晶,雷射光斑,zh_TW
dc.subject.keywordspeckle noise,nano-sized PDLC,Precision Machining,PDLC lens,en
dc.relation.page63
dc.identifier.doi10.6342/NTU201900360
dc.rights.note有償授權
dc.date.accepted2019-02-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
4.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved