請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71469完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇國棟 | |
| dc.contributor.author | Shu-Chi Chen | en |
| dc.contributor.author | 陳書齊 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:01:18Z | - |
| dc.date.available | 2029-12-31 | |
| dc.date.copyright | 2019-02-14 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-01-31 | |
| dc.identifier.citation | [1] P. Gärtner, Monatshefte für Chemie - Chemical Monthly. Springer Vienna, 2017.
[2] K. Kubo, K. Tsuji, A. Mori, and S. UJIIE, 'Synthesis and properties of cholesteryl benzoate derivatives: liquid crystals and organogelators,' Journal of Oleo Science, vol. 53, no. 9, pp. 467-470, 2004. [3] B. J. Forrest and L. W. Reeves, 'New lyotropic liquid crystals composed of finite nonspherical micelles,' Chemical Reviews, vol. 81, no. 1, pp. 1-14, 1981. [4] G. Vertogen and W. H. de Jeu, Thermotropic liquid crystals, fundamentals. Springer Science & Business Media, 2012. [5] T. Scharf, Polarized light in liquid crystals and polymers. John Wiley & Sons, 2007. [6] T. Scharf, Polarized Light in Liquid Crystal and Polymers. John Wiley & Sons, 2007. [7] F. C. Frank, 'I. Liquid crystals. On the theory of liquid crystals,' Discussions of the Faraday Society, 10.1039/DF9582500019 vol. 25, no. 0, pp. 19-28, 1958. [8] I. Szleifer, D. Kramer, A. Ben‐Shaul, W. M. Gelbart, and S. A. Safran, 'Molecular theory of curvature elasticity in surfactant films,' The Journal of Chemical Physics, vol. 92, no. 11, pp. 6800-6817, 1990. [9] S. Xu, Y. Li, Y. Liu, J. Sun, H. W. Ren, and S. T. Wu, 'Fast-Response Liquid Crystal Microlens,' (in English), Micromachines, Review vol. 5, no. 2, pp. 300-324, Jun 2014. [10] E.B.Priestly, P. J. Wojtowicz, and P. Sheng, Introduction to liquid crystals. Springer Science & Business Media, 2012. [11] K. Wang, F. Chen, Z. Liu, X. Luo, and S. Liu, 'Design of compact freeform lens for application specific light-emitting diode packaging,' Optics Express, vol. 18, no. 2, pp. 413-425, 2010. [12] Z. D. Popovic, R. A. Sprague, and G. A. Neville Connell, 'Technique for monolithic fabrication of microlens arrays,' Applied Optics, vol. 27, no. 7, pp. 1281-1284, 1988. [13] D. Daly, R. Stevens, M. C. Hutley, and D. N, 'The manufacture of microlenses by melting photoresist,' Measurement Science and Technology, vol. 1, no. 8, p. 759, 1990. [14] H. Toshiyoshi, G.-D. J. Su, J. LaCosse, and M. C. Wu, 'A Surface Micromachined Optical Scanner ArrayUsing Photoresist Lenses Fabricated by aThermal Reflow Process,' Journal of Lightwave Technology, vol. 21, no. 7, p. 1700, 2003. [15] T. R. Jay and M. B. Stern, 'Preshaping photoresist for refractive microlens fabrication,' Optical Engineering, vol. 33, no. 11, pp. 3552-3556, 1994. [16] H. Ottevaere, B. Volckaerts, M. Vervaeke, P. Vynck, A. Hermanne, and H. Thienpont, 'Plastic microlens arrays by deep lithography with protons: fabrication and characterization,' Japanese journal of applied physics, vol. 43, no. 8S, p. 5832, 2004. [17] K. Naessens, H. Ottevaere, R. Baets, P. Van Daele, and H. Thienpont, 'Direct writing of microlenses in polycarbonate with excimer laser ablation,' Applied optics, vol. 42, no. 31, pp. 6349-6359, 2003. [18] D. MacFarlane, V. Narayan, J. Tatum, W. Cox, T. Chen, and D. Hayes, 'Microjet fabrication of microlens arrays,' IEEE Photonics Technology Letters, vol. 6, no. 9, pp. 1112-1114, 1994. [19] M. B. Stern and T. R. Jay, 'Dry etching for coherent refractive microlens arrays,' Optical Engineering, vol. 33, no. 11, pp. 3547-3552, 1994. [20] H. Ottevaere et al., 'Comparing glass and plastic refractive microlenses fabricated with different technologies,' Journal of Optics A: Pure and Applied Optics, vol. 8, no. 7, p. S407, 2006. [21] H. P. Le, 'Progress and trends in ink-jet printing technology,' Journal of Imaging Science and Technology, vol. 42, no. 1, pp. 49-62, 1998. [22] B. J. d. Gans, P. C. Duineveld, and U. S. Schubert, 'Inkjet printing of polymers: state of the art and future developments,' Advanced Materials, 2004. [23] B. J. Kang, C. K. Lee, and J. H. Oh, 'All-inkjet-printed electrical components and circuit fabrication on a plastic substrate,' Microelectronic Engineering, vol. 97, pp. 251-254, 2012. [24] P. Calvert, 'Inkjet printing for materials and devices,' Chemistry of Materials, vol. 13, no. 10, pp. 3299-3305, 2001. [25] H. Sirringhaus et al., 'High-resolution inkjet printing of all-polymer transistor circuits,' Science, vol. 290, no. 5499, pp. 2123-2126, 2000. [26] C. N. Hoth, P. Schilinsky, S. A. Choulis, and C. J. Brabec, 'Printing highly efficient organic solar cells,' Nano Letters, vol. 8, no. 9, pp. 2806-2813, 2008. [27] J.-P. Lu, W.-K. Huang, and F.-C. Chen, 'Self-positioning microlens arrays prepared using ink-jet printing,' Optical Engineering, vol. 48, no. 7, p. 073606, 2009. [28] B. Wang, M. Ye, and S. Sato, 'Liquid crystal lens with focal length variable from negative to positive values,' IEEE Photonics Technology Letters, vol. 18, no. 1, pp. 79-81, 2006. [29] C. Ye and R. R. McLeod, 'GRIN lens and lens array fabrication with diffusion-driven photopolymer,' Optics letters, vol. 33, no. 22, pp. 2575-2577, 2008. [30] T. Nose, S. Masuda, and S. Sato, 'Optical properties of a liquid crystal microlens with a symmetric electrode structure,' Japanese journal of applied physics, vol. 30, no. 12B, p. L2110, 1991. [31] C. Wang, T.-t. Xu, S.-b. Bi, X. Mao, J. Zhu, and Z.-w. Yuan, 'Measurement of the focusing constant of gradient-index fiber lens and its application in developing GRIN fiber probes,' Measurement Science and Technology, vol. 90, pp. 542-548, 2016. [32] A. Naumov, M. Y. Loktev, I. Guralnik, and G. Vdovin, 'Liquid-crystal adaptive lenses with modal control,' Optics Letters, vol. 23, no. 13, pp. 992-994, 1998. [33] T. Nose, S. Masuda, and S. Sato, 'Optical properties of a hybrid-aligned liquid crystal microlens,' Molecular Crystals and Liquid Crystals, vol. 199, no. 1, pp. 27-35, 1991. [34] T. Nose, S. Masuda, and S. Sato, 'A liquid crystal microlens with hole-patterned electrodes on both substrates,' Japanese journal of applied physics, vol. 31, no. 5S, p. 1643, 1992. [35] B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, 'Liquid crystal lens with spherical electrode,' Japanese Journal of Applied Physics, vol. 41, no. 11A, p. L1232, 2002. [36] H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, 'Tunable-focus flat liquid crystal spherical lens,' Applied physics letters vol. 84, no. 23, pp. 4789-4791, 2004. [37] H. Ren and S.-T. Wu, 'Adaptive liquid crystal lens with large focal length tunability,' Optics Express, vol. 14, no. 23, pp. 11292-11298, 2006. [38] H. Ren and S.-T. Wu, Introduction to adaptive lenses. John Wiley & Sons, 2012. [39] R. B. J. P. M. Meyer, 'On the existence of even indexed disclinations in nematic liquid crystals,' Philosophical Magazine, vol. 27, no. 2, pp. 405-424, 1973. [40] M. Ye, B. Wang, and S. Sato, 'Driving of liquid crystal lens without disclination occurring by applying in-plane electric field,' Japanese journal of applied physics, vol. 42, no. 8R, p. 5086, 2003. [41] C. J. Hsu and C. R. Sheu, 'Preventing occurrence of disclination lines in liquid crystal lenses with a large aperture by means of polymer stabilization,' Optics express, vol. 19, no. 16, pp. 14999-15008, 2011. [42] R. Förch, H. Schönherr, H. Schonherr, and A. T. A. Jenkins, Surface design: applications in bioscience and nanotechnology. John Wiley & Sons, 2009. [43] D. Y. Kwok and A. W. Neumann, 'Contact angle measurement and contact angle interpretation,' Advances in colloid interface science, vol. 81, no. 3, pp. 167-249, 1999. [44] PDMS polymers. Available: https://www.sigmaaldrich.com/materials-science/material-science-products.html?TablePage=113790985 [45] W. Martienssen and H. Warlimont, 'Springer Handbook of Condensed Matter and Materials Data,' Springer, 2004. [46] Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate). Available: https://www.sigmaaldrich.com/catalog/product/aldrich/560596?lang=en®ion=TW [47] P. Wägli, A. Homsy, and N. de Rooij, 'Norland optical adhesive (NOA81) microchannels with adjustable wetting behavior and high chemical resistance against a range of mid-infrared-transparent organic solvents,' Sensors and Actuators B: Chemical, vol. 156, no. 2, pp. 994-1001, 2011. [48] Norland Optical Adhesive 81. Available: https://www.norlandprod.com/adhesives/noa%2081.html [49] J. Zimmermann, M. Rabe, G. R. Artus, and S. Seeger, 'Patterned superfunctional surfaces based on a silicone nanofilament coating,' Soft Matter, vol. 4, no. 3, pp. 450-452, 2008. [50] PFOTS (1H,1H,2H,2H-perfluorooctyltrichlorosilane). Available: https://pubchem.ncbi.nlm.nih.gov/compound/78560-45-9#section=Top [51] M. Ye, S. Hayasaka, and S. Sato, 'Liquid crystal lens array with hexagonal-hole-patterned electrodes,' Japanese journal of applied physics, vol. 43, no. 9R, p. 6108, 2004. [52] Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, 'Fabrication of a focal length variable microlens array based on a nematic liquid crystal,' Optical materials, vol. 21, no. 1-3, pp. 643-646, 2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71469 | - |
| dc.description.abstract | 本論文主要介紹利用噴墨、親疏水性侷限效應、翻模技術製作不同屈光度之液晶微透鏡陣列。製程主要分為兩個部分:微透鏡陣列及液晶盒的組裝。製作微透鏡陣列的過程中,利用SU-8光阻自身疏水之特性,並使用噴墨機台製作微透鏡陣列,再使用翻模技術翻在玻璃基板上,若要再玻璃基板做出與矽基板曲度相反的微透鏡陣列,必須把第一次翻模出來的PDMS母模上在塗上一層PFOTS作為脫模劑,最後再一次地翻模,即可得到與第一次母模相同尺寸不同曲度之PDMS母模進而在玻璃基板得到凸或凹的微透鏡,再將透明導電高分子PEDOT:PSS均勻塗佈於微透鏡上形成曲面電極,再利用NOA81填平並且旋轉塗佈PVA作為配向膜,並搭配另一個ITO玻璃組裝成液晶盒,最後注入液晶形成液晶透鏡。我們成功利用噴墨機台和精密加工製作出直徑400微米與700微米之曲面型電極液晶微透鏡陣列,因為運用兩次PDMS翻模技術進而製作出正與負屈光度之液晶微透鏡。 | zh_TW |
| dc.description.abstract | In this research, the fabrication of the liquid crystal microlens arrays with positive and negative power was demonstrated. The fabrication process consists of two parts: the fabrication of microlens arrays and liquid crystal cell. There are some steps in the process of fabricating microlens arrays: the hydrophilic confinement effect, the inkjet printing, and the replication process which was used to fabricate micorlens arrays on the glass substrate. However, in order to make the microlens arrays with different curvature at the same aperture size, it would be necessary to coat a layer of PFOTS as release agent at the first PDMS mold. Finally, we could get the mold opposite of the first. After completing the microlens arrays, PEDOT:PSS was coated on the microlens arrays as a curved electrode and flatten by NOA81. Lastly, we assembled the sample with another ITO glass to form the liquid crystal microlens arrays. We have successfully using inkjet printing and precision machining to fabricate a curved electrode liquid crystal microlens arrays with diameters 400 μm and 700 μm on the glass substrate. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:01:18Z (GMT). No. of bitstreams: 1 ntu-108-R05941075-1.pdf: 3030291 bytes, checksum: 92c9f52587a080e3475378b108a5ead4 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES viii LIST OF TABLE xv Chapter 1 Introduction 1 1.1 Liquid crystal 1 1.1.1 Types of liquid crystals and molecular structure 2 1.1.2 Physical properties of liquid crystals 3 1.2 Review fabrication of technologies of microlens array 7 1.2.1 Thermal reflow of photoresist 9 1.2.2 Laser beam writing 10 1.2.3 Deep lithography with protons (DLP) [16] 11 1.2.4 Laser ablation [17] 12 1.2.5 Inkjet printing process 14 1.3 Motivation 19 Chapter 2 Liquid crystal lens 21 2.1 Gradient refractive index lens 21 2.2 Liquid crystal lens with non-uniform electric field 22 2.2.1 Modal Control Electrode 23 2.2.2 Hole-pattered electrode 24 2.2.3 Curved electrode 25 2.3 Liquid crystal lens with curved electrode 26 2.3.1 Focal length [38] 26 2.3.2 Interference fringes 28 2.3.3 Disclination lines 29 Chapter 3 Working principle and fabrication processes 31 3.1 Principle of hydrophilicity and hydrophobicity 31 3.2 Inkjet printing fabrication process 32 3.2.1 Inkjet printer framework 33 3.2.2 The gas pressure and ink supply control system 35 3.2.3 The drop monitoring system 37 3.2.4 The dual-axis motion system 38 3.2.5 Program controlling system 39 3.3 Materials 46 3.3.1 Polydimethylsiloxane (PDMS) 46 3.3.2 Liquid crystal 47 3.3.3 PEDOT:PSS 49 3.3.4 NOA81 [47] 50 3.3.5 PFOTS (1H,1H,2H,2H-perfluorooctyltrichlorosilane) 52 3.4 Fabrication process 53 3.4.1 SU-8 photoresist layer with circular holes on silicon wafer 54 3.4.2 NOA 81 microlens arrays on glass 56 3.4.3 Generation of a series of PDMS copies 57 3.4.4 Transparent conductive layer and flatten microlens arrays 58 3.4.5 Assembly of the liquid crystal cell 59 3.4.6 Precision Machining 61 Chapter 4 Experimental results 62 4.1 The interference fringes 62 4.1.1 Lens of aperture size of 400 microns 63 4.1.2 Lens of aperture size of 700 microns 68 4.2 Image performance 72 Chapter 5 Conclusion 74 REFERENCE 76 | |
| dc.language.iso | en | |
| dc.subject | 微透鏡陣列 | zh_TW |
| dc.subject | 液晶透鏡 | zh_TW |
| dc.subject | 噴墨 | zh_TW |
| dc.subject | 脫模劑 | zh_TW |
| dc.subject | 二次翻模 | zh_TW |
| dc.subject | microlens arrays | en |
| dc.subject | replication process | en |
| dc.subject | release agent | en |
| dc.subject | liquid crystal lens | en |
| dc.subject | inkjet printing | en |
| dc.title | 利用曲面型電極製作正負屈光度之液晶微透鏡陣列 | zh_TW |
| dc.title | Fabrication of liquid crystal microlens arrays of
positive and negative powers using curved electrode | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃定洧,蔡永傑 | |
| dc.subject.keyword | 液晶透鏡,微透鏡陣列,噴墨,二次翻模,脫模劑, | zh_TW |
| dc.subject.keyword | liquid crystal lens,microlens arrays,inkjet printing,replication process,release agent, | en |
| dc.relation.page | 81 | |
| dc.identifier.doi | 10.6342/NTU201900362 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-02-11 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 2.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
