Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71467
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor單秋成(Chow-Shing Shin)
dc.contributor.authorTzu-Chieh Linen
dc.contributor.author林子傑zh_TW
dc.date.accessioned2021-06-17T06:01:15Z-
dc.date.available2019-02-15
dc.date.copyright2019-02-15
dc.date.issued2019
dc.date.submitted2019-02-01
dc.identifier.citation參考文獻
1. Park, Y.-B., et al., Strength of carbon/epoxy composite single-lap bonded joints in various environmental conditions. Composite Structures, 2010. 92(9): p. 2173-2180.
2. Adams, R.D., J. Comyn, and W.C. Wake, Structural adhesive joints in engineering. 1997: Springer Science & Business Media.
3. Higgins, A., Adhesive bonding of aircraft structures. International Journal of Adhesion and Adhesives, 2000. 20(5): p. 367-376.
4. Di Bella, G., et al., Mechanical characterization of adhesive joints with dissimilar substrates for marine applications. International Journal of Adhesion and Adhesives, 2013. 41: p. 33-40.
5. Hendricks, W.R., The Aloha Airlines accident—a new era for aging aircraft, in Structural integrity of aging airplanes. 1991, Springer. p. 153-165.
6. Goglio, L. and M. Rossetto, Ultrasonic testing of adhesive bonds of thin metal sheets. NDT & E International, 1999. 32(6): p. 323-331.
7. Michaloudaki, M., E. Lehmann, and D. Kosteas, Neutron imaging as a tool for the non-destructive evaluation of adhesive joints in aluminium. International journal of adhesion and adhesives, 2005. 25(3): p. 257-267.
8. Mactabi, R., I.D. Rosca, and S.V. Hoa, Monitoring the integrity of adhesive joints during fatigue loading using carbon nanotubes. Composites Science and Technology, 2013. 78: p. 1-9.
9. Kang, M.-H., J.-H. Choi, and J.-H. Kweon, Fatigue life evaluation and crack detection of the adhesive joint with carbon nanotubes. Composite Structures, 2014. 108: p. 417-422.
10. Alan Baker, Nik Rajic, Claire Davis, “Towards a practical structural health monitoring technology for patched cracks in aircraft structure”, Composites: Part A 40 (2009) 1340–1352。
11. Schulz, W.L., et al. Progress on monitoring of adhesive joints using multiaxis fiber grating sensors. in SPIE's 7th Annual International Symposium on Smart Structures and Materials. 2000. International Society for Optics and Photonics.
12. Abdel Wahab, M., Fatigue in adhesively bonded joints: a review. ISRN Materials Science, 2012. 2012.
13. Pires, I., et al., Performance of bi-adhesive bonded aluminium lap joints. International Journal of Adhesion and Adhesives, 2003. 23(3): p. 215-223.
14. Volkersen, O., Rivet strength distribution in tensile-stressed rivet joints with constant cross-section. 1938. 15: p. 41-47.
15. Kahraman, R. ,et al., Influence of adhesive thickness and filler content on the mechanical performance of aluminum single-lap joints bonded with aluminum powder filled epoxy adhesive. Journal of materials processing technology, 2008. 205(1-3): p. 183-189.
16. Pereira, A.M,et al., Analysis of manufacturing parameters on the shear strength of aluminium adhesive single-lap joints. Journal of Materials Processing Technology, 2010. 210(4): p. 610–617.
17. Tsai, M.Y. and J. Morton, The effect of a spew fillet on adhesive stress distributions in laminated composite single-lap joints. CompositeStruct, 1995. 32:p.123-131.
18. Lang, T.P. and P.K. Mallick, Effect of spew geometry on stresses in single lap adhesive joints. International Journal of Adhesion and Adhesives, 1998. 18(3): p. 167-177.
19. Ferreira, J., et al., Fatigue behaviour of composite adhesive lap joints. Composites Science and Technology, 2002. 62(10): p. 1373-1379.
20. Quaresimin, M. and M. Ricotta, Fatigue behavior and damage evolution of single lap bonded joints in composite material. Composites Science and Technology, 2006. 66: p. 176–187
21. Briskham, P. and G. Smith, Cyclic stress durability testing of lap shear joints exposed to hot-wet conditions. International journal of adhesion and adhesives, 2000. 20(1): p. 33-38.
22. Ying Wang and Thomas H. Hahn , AFM characterization of the interfacial properties of carbon fiber reinforced polymer composites subjected to hygrothermal treatments. Composites Science and Technology, 2007. 67: p. 92-101
23. 沈育霖, 光纖感測器簡介. 勞工安全簡訊, 2005. 72: p. 4-9.
24. Born, M. and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. 2000: CUP Archive.
25. 沈育霖, 單秋成, 光纖感測器原理及在複合材料上之應用. 工業安全衛生月刊, 2005(187): p. 9-24.
26. Erdogan, T., Fiber grating spectra. Journal of lightwave technology, 1997. 15(8): p. 1277-1294.
27. Saleh, B.E., M.C. Teich, and B.E. Saleh, Fundamentals of photonics. Vol. 22. 1991: Wiley New York.
28. Kersey, A.D., et al., Fiber grating sensors. Journal of lightwave technology, 1997. 15(8): p. 1442-1463.
29. Menendez, J.M. and J.A. Guemes. Bragg-grating-based multiaxial strain sensing: its application to residual strain measurement in composite laminates. in SPIE's 7th Annual International Symposium on Smart Structures and Materials. 2000. International Society for Optics and Photonics.
30. Murayama, H., et al., Strain monitoring of a single-lap joint with embedded fiber-optic distributed sensors. Structural Health Monitoring, 2012. 11(3): p. 325-344.
31. Lin, C.L., Opto-Mechanical Applications of Microstructured Materials 2004, Joseph Fourier University / National Taiwan University.
32. Murayama, H., et al., Strain monitoring of a single-lap joint with embedded fiber-optic distributed sensors. Structural Health Monitoring, 2012. 11(3): p. 325-344.
33. Sulejmani, S., et al., Disbond monitoring in adhesive joints using shear stress optical fiber sensors. Smart Materials and Structures, 2014. 23(7): p. 075006.
34. Kersey, A., T. Berkoff, and W. Morey, High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection. Electronics Letters, 1992. 28(3): p. 236-238.
35. Fallon, R., et al., All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating. Measurement Science and Technology, 1998. 9(12): p. 1969.
36. 陳柏廉, 布拉格光纖光柵於結構衝擊監測與定位之應用. 國立台灣大學機械工程學系博士論文, 2010.
37. 蔣涵茵, 高靈敏度微型光纖光柵溫度感測器. 國立台灣大學機械工程學系碩士論文, 2015.
38. 陳佩嫈, 以光纖光柵感測器監測碳纖維複材經衝擊/疲勞破壞/貼片修補之缺陷發展. 國立台灣大學機械工程學系碩士論文, 2012.
39. 楊易叡, 光纖光柵在單搭接膠合接口完整性監測之應用. 國立台灣大學機械工程學系碩士論文, 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71467-
dc.description.abstract工程結構的各個部件接合一般仰賴:螺栓或鉚釘鎖固、高溫熔融焊接,卻都各有其侷限性,而以結構膠接合相對於傳統接合方式有較輕、改善應力集中與面外彎曲現象,隨著近年來黏膠性能提升,使得膠合接合的應用日趨普遍,關於膠合接口之研究已有許多,但尚缺乏完整性監測的探討。
本研究採用布拉格光纖光柵(fiber Bragg grating, FBG)感測器,利用其可內埋於單搭接膠合接口內與膠的結合力強的優勢來偵測膠合接口,實驗的試片搭接物為碳纖維強化複合材料(Carbon fiber reinforced plastics, CFRP),黏膠為Loctite所生產之環氧樹脂結構膠E-30CL,由萬能試驗測試機(Material Testing System, MTS)進行拉伸測試、疲勞測試、拉伸至尚未破壞後疲勞測試與拉伸至破壞後疲勞測試,在測試過程中引起的破壞,能釋放結構膠成化時的殘餘應力,並造成膠合結構內不均勻應變場產生,導致FBG感測器頻譜波形產生嚴重變化。接著以浸泡熱水三十天與高溫低濕環境三十天後進行拉伸測試,測試溫濕環境對複材單搭接膠合接口影響,利用水能由複合材料滲入接口之特性,證實FBG感測器頻譜能偵測到因破壞或是水分滲入所造成之應變場改變。在確認以FBG頻譜偵測膠合接口破壞可行性後,接著探討以能量調變法監控FBG感測器經拉伸測試後的頻譜變化,在拉伸至破壞產生時由於應變集中使得FBG頻譜波形變化劇烈,故在接近破壞時檢光器輸出電壓會有突然變化之趨勢,並以計算模擬方法改善實驗上的困難。
zh_TW
dc.description.abstractFor many engineering structure, they generally rely on: bolting, riveting and spot welding. But each has their own limitations. However, adhesive bonded joints promote a more uniform stress distribution and less out-of-plane bending than other methods of joining. With the increase of adhesive properties in recent years, so now adhesives are not only used for secondary structures but also applied to some primary structures. Although adhesive joints are widely used in industries now, the research on monitoring the integrity of adhesive joints is still at an early stage and lack complete study.
This research used fiber Bragg grating (FBG) sensor with its advantage, which is its capability of being embedded in to the adhesive single lap joints for monitoring damage. The adherend was carbon fiber reinforced plastic (CFRP) and the adhesive was epoxy resin E-30CL manufactured by Loctite. The experiments including tensile test, fatigue test, fatigue test after tenile damage has not occurred, fatigue test after tensile damage has occurred were test by Material Testing System (MTS). During the testing process, the damage could release the residual stress which was formed by epoxy curing and cause non-uniform stress, resulting in a serious change in FBG reflected spectrum. To improve FBG sensors can monitor humidty damage which caused by moisture and used the advantage of CFRP can be diffused by water. The experiment followed by tensile test after immersed the specimens into hot water for 30 days, tensile test after the specimens have been placed in a high temperature and low humidity environment for 30 days. The conclusion is that the FBG reflected spectrum could detect the change in strain filed caused by tensile, fatigue and moisture damage. After the feasibility of using FBG sensors to detect the damage in the adhesives had been confirmed. Then use energy modulation method to monitor changes of FBG reflected spectrum caused by tensile damage. The modulation voltage will suddenly change when the damage has occurred because of the strain concentration effect. Furthermore, this research used calculation method to simulate the modulation voltage, which could reduce the difficulty of the experiment and improve energy modulation method.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:01:15Z (GMT). No. of bitstreams: 1
ntu-108-R04522534-1.pdf: 26267398 bytes, checksum: aff518f9e97165269b9c9498460421db (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目錄
摘要 I
Abstract II
目錄 IV
圖目錄 X
表目錄 XXII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 論文架構 3
第二章 文獻回顧 4
2.1 膠合接口 4
2.1.1 單搭接膠合接口製備參數 4
2.1.2 溢膠對單搭接膠合接口影響 5
2.1.3 疲勞測試 7
2.1.4 高溫高濕環境 8
2.2 光纖基本構造 9
2.3 光纖光柵感測器 10
2.3.1 光纖光柵感測器原理 10
2.3.2 布拉格光纖光柵原理 11
2.3.3 光纖光柵感測器應用於膠合接口 14
2.4 光學能量調變感測原理 16
第三章 實驗設備與儀器 19
3.1 製備複合材料試片用設備 19
3.1.1 熱壓成型系統 19
3.1.2 鑽石砂輪機 20
3.2 製備單搭接膠合接口試片用設備 21
3.2.1 環氧樹脂結構膠E-30CL與混膠槍 21
3.2.2 混膠管 22
3.2.3 噴砂機 22
3.3 資料擷取與控制設備 24
3.3.1 NI-6009 24
3.3.2 NI-GPIB-USB-HS 傳輸線 24
3.4 光纖相關設備 25
3.4.1 光循環器(Optical Circulator) 25
3.4.2 光學開關(Optical Switch) 26
3.4.3 可調式濾波器(OTF-300-03S3) 26
3.4.4 光耦合器(Coupler) 27
3.4.5 光頻譜分析儀(Optical Spectrum Analyzer, OSA) 28
3.4.6 寬頻光源(Broadband light source) 29
3.4.7 檢光器(Photo Detector, PD) 29
3.4.8 手持式光纖顯微鏡 30
3.4.9 光纖切割機 30
3.4.10 光纖熔接機 31
3.5 溫度與環境測試設備 32
3.5.1 恆溫水槽 32
3.5.2 恆溫恆濕箱 33
3.5.3 防潮箱 33
3.6 萬能材料試驗機(Material Testing System, MTS) 34
第四章 實驗方法與流程 35
4.1 試片命名系統 35
4.2 試片準備 36
4.2.1碳纖維強化複合材料基層板製作方式 36
4.2.2膠合接口內埋光纖之試片製作 37
4.3 實驗光路設置 38
4.4 定量分析頻譜變化 39
4.5 以能量調變法監測頻譜變化 40
4.6 實驗流程 41
4.6.1 拉伸測試 41
4.6.2 疲勞測試 41
4.6.3 拉伸至尚未破壞後進行疲勞測試 41
4.6.4 拉伸至破壞後進行疲勞測試 41
4.6.5 浸入熱水中三十天後進行拉伸測試 42
4.6.6 拉伸破壞後浸入熱水中三十天後進行拉伸測試 42
4.6.7 放置高溫低濕環境30天後進行測試 42
4.6.8 以能量調變法進行拉伸測試 42
第五章 能量調變法模擬 43
5.1 能量調變法感測原理 43
5.2 能量調變法模擬目的 45
5.3 濾波器性質模擬 46
5.3.1 濾波後波形計算驗證 47
5.3.2 濾波器模擬 50
5.3.3 濾波器半波寬模擬 52
5.3.4 濾波器性質模擬小結 53
5.4 電壓輸出模擬 53
5.4.1 光能量轉電壓值 53
5.4.2 實際量測與計算之比較 54
5.4.3 電壓輸出模擬小結 55
5.5 標準化PD電壓值 55
5.6 不同濾波頻寬與電壓輸出位置對拉伸測試影響 56
5.6.1 1nm寬濾波器 57
5.6.2 2nm寬濾波器 59
5.6.3 3nm寬濾波器 61
5.6.4 4nm寬濾波器 63
5.6.5 5nm寬濾波器 65
5.6.6 不同濾波頻寬與電壓輸出位置對拉伸測試頻譜影響小結 67
5.7 能量調變法模擬小結 67
第六章 實驗結果與討論 68
6.1 試片強度一致性 68
6.2 拉伸測試 69
6.2.1 拉伸測試小結 78
6.3 疲勞測試 80
6.3.1 疲勞壽命測定 80
6.3.2 內埋FBG之疲勞測試 81
6.3.3 先拉伸至尚未破壞後再做疲勞測試 84
6.3.4 拉伸至破壞後疲勞測試 87
6.3.4.1 拉伸至破壞 87
6.3.4.2 疲勞測試 88
6.3.5 疲勞測試小結 91
6.4 浸入熱水中三十天後進行拉伸測試 94
6.4.1 浸泡熱水中之天數與接口強度變化 94
6.4.2 浸泡於熱水中三十天的頻譜變化 96
6.4.3 放置乾燥箱五天的頻譜變化 97
6.4.4 拉伸測試 101
6.4.5 疲勞測試 106
6.4.6 浸入熱水中三十天後進行測試小結 108
6.5 拉伸破壞後浸入熱水中三十天後進行拉伸測試 111
6.5.1 拉伸至破壞 111
6.5.2 浸泡於熱水中三十天的頻譜變化 111
6.5.3 放置乾燥箱五天的頻譜變化 111
6.5.4 拉伸測試 116
6.5.5 拉伸破壞後浸入熱水中三十天後進行拉伸測試小結 120
6.6 放置高溫低濕環境三十天後進行測試 121
6.6.1 放置高溫低濕環境中之天數與拉伸強度 121
6.6.2 放置高溫低濕環境三十天的頻譜變化 122
6.6.3 拉伸測試 126
6.6.4 疲勞測試 128
6.6.5 放置高溫低濕環境三十天後進行測試小結 130
6.7 以能量調變法監測拉伸測試 131
6.7.1 實際量測與模擬計算電壓 131
6.7.2 以拉伸測試記錄頻譜計算標準化PD電壓 132
6.7.3 以能量調變法監測拉伸測試小結 138
第七章 結論與未來展望 139
7.1 結論 139
7.2 未來展望 141
參考文獻 142
附錄 145
dc.language.isozh-TW
dc.subject單搭接膠合接口zh_TW
dc.subject光纖光柵感測器zh_TW
dc.subject碳纖維複合材料zh_TW
dc.subject環氧樹脂結構膠zh_TW
dc.subjectEpoxy resin structural adhesiveen
dc.subjectSingle lap jointen
dc.subjectOptical fiber gratingen
dc.subjectCarbon fiber reinforced plasticen
dc.title以內埋光纖光柵監控複材膠合接口技術探討zh_TW
dc.titleInvestigating Composite Adhesive Single Lap Joint by Using Pre-embedded Fiber Bragg Grating Sensorsen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee廖顯奎(Shien-Kuei Liaw),江家慶,林志郎(Chih-Lang Lin)
dc.subject.keyword單搭接膠合接口,光纖光柵感測器,碳纖維複合材料,環氧樹脂結構膠,zh_TW
dc.subject.keywordSingle lap joint,Optical fiber grating,Carbon fiber reinforced plastic,Epoxy resin structural adhesive,en
dc.relation.page212
dc.identifier.doi10.6342/NTU201900118
dc.rights.note有償授權
dc.date.accepted2019-02-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
25.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved