Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 健康政策與管理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71453
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾國彪
dc.contributor.authorYi-Hao Luen
dc.contributor.author陸翊豪zh_TW
dc.date.accessioned2021-06-17T06:01:00Z-
dc.date.available2024-03-05
dc.date.copyright2019-03-05
dc.date.issued2019
dc.date.submitted2019-02-11
dc.identifier.citation台灣氣喘諮詢協會. (2017). 2017 台灣氣喘診療指引.
朱育增, 吳肖琪, 李玉春, 賴美淑, & 譚醒朝. (2010). 探討共病測量方法於健保次級資料之應用. [Assessing Measures of Comorbidity Using National Health Insurance Databases]. 台灣公共衛生雜誌, 29(3), 191-200. doi:10.6288/tjph2010-29-03-01
吳家興, 林瑞雄, 謝貴雄, 邱文達, 陳麗美, 邱淑媞, . . . 蕭慧娟. (1998). 台灣北部國中學生氣喘盛行率調查. 中華公共衛生雜誌, 17(3), 214-225.
游宗憲, & 鍾國彪. (2015). 利用申報與行政資料進行醫療照護相關感染個案判定. [Identifying Healthcare-Associated Infections Identification by Claims and Administrative Database]. 台灣醫學, 19(2), 178-187. doi:10.6320/fjm.2015.19(2).10
簡怡祥. (2017). 加入論質計酬對照護過程與照護結果之影響─ 以氣喘為例. 臺灣大學健康政策與管理研究所學位論文, 1-169.
蘇有村, 陳國俊, 吳展耀, 翁慧卿, 陳施如, 劉惠君, . . . 牛震廣. (2008). 全民健康保險氣喘醫療給付改善方案改善多數兒童氣喘疾病嚴重度. [Government-sponsored Disease Management Program Improves Severity in the Majority of Pediatric Asthma in Taiwan]. 中華民國兒童胸腔醫學會雜誌, 5(4), 1-10.
Aït-Khaled, N., Enarson, D., Bencharif, N., Boulahdib, F., Camara, L., Dagli, E., . . . Ngoran, K. (2006). Implementation of asthma guidelines in health centres of several developing countries. The International Journal of Tuberculosis and Lung Disease, 10(1), 104-109.
Asthma, G. I. f. (2017). Global Strategy for Asthma Management and Prevention. www.ginaasthma.org.
Barcala, F. G., Viñas, J. A., Cuadrado, L. V., Bourdin, A., Dobaño, J. A., & Takkouche, B. (2010). Trends in hospital admissions due to asthma in north-west Spain from 1995 to 2007. Allergologia et immunopathologia, 38(5), 254-258.
Bateman, E. D., Hurd, S., Barnes, P., Bousquet, J., Drazen, J., FitzGerald, M., . . . Pedersen, S. (2008). Global strategy for asthma management and prevention: GINA executive summary. European Respiratory Journal, 31(1), 143-178.
Berger, W. E., Legorreta, A. P., Blaiss, M. S., Schneider, E. C., Luskin, A. T., Stempel, D. A., . . . Weiss, K. B. (2004). The utility of the Health Plan Employer Data and Information Set (HEDIS) asthma measure to predict asthma-related outcomes. Annals of Allergy, Asthma & Immunology, 93(6), 538-545. doi:http://dx.doi.org/10.1016/S1081-1206(10)61260-4
Birnbaum, H. G., Ivanova, J. I., Yu, A. P., Hsieh, M., Seal, B., Emani, S., . . . Colice, G. L. (2009). Asthma Severity Categorization Using a Claims-Based Algorithm or Pulmonary Function Testing. Journal of Asthma, 46(1), 67-72. doi:Pii 908441720
10.1080/02770900802503099
Chiang, B.-L., Hsieh, C.-T., Wang, L.-C., Lee, J.-H., Yu, H.-H., & Lin, Y.-T. (2009). Clinical course and outcome of children with status asthmaticus treated in a pediatric intensive care unit: a 15-year review. J Microbiol Immunol Infect, 42(6), 488-493.
Colice, G. L. (2004). Categorizing asthma severity: an overview of national guidelines. Clinical medicine & research, 2(3), 155-163.
de Almeida, A. B., Covas, A., Prates, L., & Fragoso, E. (2009). Asthma hospital admission and mortality in mainland Portugal 2000–2007. Revista Portuguesa de Pneumologia (English Edition), 15(3), 367-383.
Deyo, R. A., Cherkin, D. C., & Ciol, M. A. (1992). Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. Journal of clinical epidemiology, 45(6), 613-619.
Eisner, M. D., Yegin, A., & Trzaskoma, B. (2012). Severity of asthma score predicts clinical outcomes in patients with moderate to severe persistent asthma. Chest, 141(1), 58-65.
Erickson, S. R., & Kirking, D. M. (2004). Variation in the distribution of patient-reported outcomes based on different definitions of defining asthma severity. Current medical research and opinion, 20(12), 1863-1872.
Everhart, R. S., & Fiese, B. H. (2009). Asthma severity and child quality of life in pediatric asthma: a systematic review. Patient Education and Counseling, 75(2), 162-168.
Firoozi, F., Lemiere, C., Beauchesne, M. F., Forget, A., & Blais, L. (2007). Development and validation of database indexes of asthma severity and control. Thorax, 62(7), 581-587. doi:10.1136/thx.2006.061572
Fuhlbrigge, A. L., Carey, V. J., Finkelstein, J. A., Lozano, P., Inui, T. S., Weiss, S. T., & Weiss, K. B. (2005). Validity of the HEDIS criteria to identify children with persistent asthma and sustained high utilization. Am J Manag Care, 11(5), 325-330.
Guo, J. J., Tsai, K., Kelton, C. M. L., Bian, B. Y., & Wigle, P. R. (2011). Risk of serious asthma exacerbations associated with long-acting beta agonists among patients with asthma: A retrospective cohort study. Annals of Allergy Asthma & Immunology, 106(3), 214-222. doi:10.1016/j.anai.2010.12.008
Hong, J., Bao, Y., Chen, A., Li, C., Xiang, L., Liu, C., . . . Shang, Y. (2017). Chinese guidelines for childhood asthma 2016: Major updates, recommendations and key regional data. Journal of Asthma, 1-9. doi:10.1080/02770903.2017.1396474
Horner, S. D., Kieckhefer, G. M., & Fouladi, R. T. (2006). Measuring asthma severity: instrument refinement. Journal of Asthma, 43(7), 533-538.
Hsiao, H.-J., Wang, L.-C., Yang, Y.-H., Lee, J.-H., Yu, H.-H., Lin, Y.-T., & Chiang, B.-L. (2013). A nationwide survey of the severity, comorbidity, and mortality of hospitalized patients with asthma in Taiwan. Pediatrics & Neonatology, 54(4), 254-260.
Hsieh, K.-H., & Shen, J.-J. (1988). Prevalence of childhood asthma in Taipei, Taiwan, and other Asian Pacific countries. Journal of Asthma, 25(2), 73-82.
Humbert, M., Holgate, S., Boulet, L. P., & Bousquet, J. (2007). Asthma control or severity: that is the question. Allergy, 62(2), 95-101.
Ivanova, J. I., Bergman, R., Birnbaum, H. G., Colice, G. L., Silverman, R. A., & McLaurin, K. (2012). Effect of asthma exacerbations on health care costs among asthmatic patients with moderate and severe persistent asthma. Journal of Allergy and Clinical Immunology, 129(5), 1229-1235. doi:10.1016/j.jaci.2012.01.039
Ivanova, J. I., Birnbaum, H. G., Hsieh, M., Yu, A. P., Seal, B., van der Molen, T., . . . Colice, G. L. (2008). Adherence to Inhaled Corticosteroid Use and Local Adverse Events in Persistent Asthma. American Journal of Managed Care, 14(12), 801-809.
Jacob, C., Haas, J. S., Bechtel, B., Kardos, P., & Braun, S. (2016). Assessing asthma severity based on claims data: a systematic review. Eur J Health Econ. doi:10.1007/s10198-016-0769-2
Juniper, E., Guyatt, G., Ferrie, P., & King, D. (1999). Development and validation of a questionnaire to measure asthma control. European Respiratory Journal, 14(4), 902-907.
Lai, C., Beasley, R., Crane, J., Foliaki, S., Shah, J., & Weiland, S. (2009). Global variation in the prevalence and severity of asthma symptoms: phase three of the International Study of Asthma and Allergies in Childhood (ISAAC). Thorax.
Leidy, N. K., Paramore, L. C., Watrous, M., Doyle, J., & Zeiger, R. S. PEN3: DEVELOPMENT OF AN ALGORITHM FOR ESTIMATING ASTHMA SEVERITY FROM AN ADMINISTRATIVE COST DATABASE. Value in Health, 2(5), 394-395. doi:10.1016/S1098-3015(10)75867-8
Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., . . . Ahn, S. Y. (2012). Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. The lancet, 380(9859), 2095-2128.
Masoli, M., Fabian, D., Holt, S., & Beasley, R. (2004). The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy, 59(5), 469-478.
Mello, B. H. G. d., Oliveira, G. B. F., Ramos, R. F., Lopes, B. B. C., Barros, C. B. S., Carvalho, E. d. O., . . . Piegas, L. S. (2014). Validation of the Killip-Kimball classification and late mortality after acute myocardial infarction. Arquivos brasileiros de cardiologia, 103(2), 107-117.
Nathan, R. A., Sorkness, C. A., Kosinski, M., Schatz, M., Li, J. T., Marcus, P., . . . Pendergraft, T. B. (2004). Development of the asthma control test: a survey for assessing asthma control. Journal of Allergy and Clinical Immunology, 113(1), 59-65.
National, A. E., & Prevention, P. (2007). Expert Panel Report 3 (EPR-3): Guidelines for the Diagnosis and Management of Asthma-Summary Report 2007. The Journal of allergy and clinical immunology, 120(5 Suppl), S94.
Panizza, J., James, A., Ryan, G., De Klerk, N., & Finucane, K. (2006). Mortality and airflow obstruction in asthma: a 17‐year follow‐up study. Internal medicine journal, 36(12), 773-780.
Pearce, N., Aït-Khaled, N., Beasley, R., Mallol, J., Keil, U., Mitchell, E., & Robertson, C. (2007). Worldwide trends in the prevalence of asthma symptoms: phase III of the International Study of Asthma and Allergies in Childhood (ISAAC). Thorax, 62(9), 758-766.
Pedersen, S. E., Hurd, S. S., Lemanske, R. F., Becker, A., Zar, H. J., Sly, P. D., . . . Bateman, E. D. (2011). Global strategy for the diagnosis and management of asthma in children 5 years and younger. Pediatric pulmonology, 46(1), 1-17.
Rost, N. S., Bottle, A., Lee, J. M., Randall, M., Middleton, S., Shaw, L., . . . Hemmen, T. M. (2016). Stroke severity is a crucial predictor of outcome: an international prospective validation study. Journal of the American Heart Association, 5(1), e002433.
Schatz, M., Zeiger, R. S., Vollmer, W. M., Mosen, D., Apter, A. J., Stibolt, T. B., . . . Cook, E. F. (2006). Validation of a beta-agonist long-term asthma control scale derived from computerized pharmacy data. Journal of Allergy and Clinical Immunology, 117(5), 995-1000. doi:10.1016/j.jaci.2006.01.053
Schatz, M., Zeiger, R. S., Yang, S. J. T., Chen, W. S., Crawford, W. W., Sajjan, S. G., & Allen-Ramey, F. (2010). Persistent Asthma Defined Using HEDIS Versus Survey Criteria. American Journal of Managed Care, 16(11), E281-E288.
Vernacchio, L., Trudell, E. K., & Muto, J. M. (2013). Correlation of Care Process Measures With Childhood Asthma Exacerbations. Pediatrics, 131(1), E136-E143. doi:10.1542/peds.2012-1144
Vollmer, W. M., Markson, L. E., O'CONNOR, E., Sanocki, L. L., Fitterman, L., Berger, M., & Sonia Buist, A. (1999). Association of asthma control with health care utilization and quality of life. American Journal of Respiratory and Critical Care Medicine, 160(5), 1647-1652.
Vos, T., Flaxman, A. D., Naghavi, M., Lozano, R., Michaud, C., Ezzati, M., . . . Aboyans, V. (2012). Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The lancet, 380(9859), 2163-2196.
Wildfire, J. J., Gergen, P. J., Sorkness, C. A., Mitchell, H. E., Calatroni, A., Kattan, M., . . . Wood, R. A. (2012). Development and validation of the Composite Asthma Severity Index—an outcome measure for use in children and adolescents. Journal of Allergy and Clinical Immunology, 129(3), 694-701.
Wu, T.-J., Chen, B.-Y., Lee, Y. L., Hsiue, T.-R., Wu, C.-F., & Guo, Y. L. (2015). Different severity and severity predictors in early-onset and late-onset asthma: a Taiwanese population-based study. Respiration, 90(5), 384-392.
Wu, W., Wan, K., Wang, S., Yang, W., & Liu, W. (2011). 10 Prevalence, Severity, and Time Trends of Allergic Conditions in 6-to-7-Year-Old Schoolchildren in Taipei. Journal of Investigational Allergology and Clinical Immunology, 21(7), 556.
Yawn, B. P., Brenneman, S. K., Allen-Ramey, F. C., Cabana, M. D., & Markson, L. E. (2006). Assessment of asthma severity and asthma control in children. Pediatrics, 118(1), 322-329.
Yeh, K.-W., Fang, W., & Huang, J.-L. (2008). - Increasing the hospitalization of asthma in children not in adults – from a national survey in Taiwan 1996–2002. - 19(- 1), - 19.
Yoon, A. C., Crawford, W., Sheikh, J., Nakahiro, R., Gong, A. L., & Schatz, M. (2015). The HEDIS Medication Management for People with Asthma Measure is Not Related to Improved Asthma Outcomes. Journal of Allergy and Clinical Immunology-in Practice, 3(4), 547-552. doi:10.1016/j.jaip.2015.02.002
Yu, T.-H., Hou, Y.-C., Lin, K.-C., & Chung, K.-P. (2014). Is it possible to identify cases of coronary artery bypass graft postoperative surgical site infection accurately from claims data? BMC Medical Informatics and Decision Making, 14(1), 42. doi:10.1186/1472-6947-14-42
Zahran, H. S., Bailey, C. M., Qin, X., & Moorman, J. E. (2014). Assessing asthma severity among children and adults with current asthma. Journal of Asthma, 51(6), 610-617.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71453-
dc.description.abstract研究背景與目的:氣喘是國人常見的慢性呼吸道疾病,氣喘死亡率與氣喘嚴重度之間存在著相關性,必須藉由氣喘嚴重度的分級評估來採取不同的治療策略,因此氣喘嚴重度在臨床上以及氣喘品質照護上扮演很重要的角色。根據台灣氣喘諮詢協會出版的氣喘診療指引指出,兒童與青少年為氣喘的主要族群,而成人與兒童也應採取不同的評估方法,因此需要發展適合小兒氣喘的嚴重度分級模式。目前,嚴重度的分級尚未有明確的共識,在過去也有許多的準則建立試圖來填補次級資料嚴重度缺口,但沒有一個統一且最好的準則,必須整合許多準則及資料,甚至有嚴重度發展方法上使用了多個準則進行次級資料的相關嚴重度分級模式,同時,也必須針對每個國家的情況進行準則修正,因此本研究欲發展屬於台灣次級資料的小兒氣喘嚴重度分級模式。準則上的嚴重度分類十分複雜以及多樣化,對於其對於其準則的效度驗證也是必要的,過去針對次級資料所做的嚴重度分級模式,其建立後的效度驗證卻是十分缺乏的,因此在嚴重度分級模式建立後的驗證分析是值得探討以及研究,才能對於發展的次級資料嚴重度分級模式具有一定的效果以及適配度。總結上述,本研究的目的在於探討並建立次級資料小兒氣喘嚴重度分級模式,以及對於小兒氣喘嚴重嚴重度分級模式進行驗證。
材料與方法:本研究採用全民健康保險研究資料庫,確立2011年之小兒氣喘新發個案,根據新發個案的病人其氣喘就醫紀錄當中的氣喘相關用藥紀錄進行分類,建立分類後的用藥進行每次就醫醫師所開立的用藥組合,將各種用藥組合進行三種嚴重度用藥組合分類,再根據每個病人三類嚴重度用藥組合的比例進行病人的嚴重度分級建立,利用各種閾值方式判定用藥比例的標準篩選,最後分出各級嚴重度。之後進行分級模式的相關統計分析,包括存活分析使用Kaplan-Meier曲線、羅吉斯迴歸以及Cox Proportional Hazard Model探討嚴重度及急性發作之間的風險關係,以及分級模式建立後的分析驗證,測量嚴重度分級模式的適配性,最後發展出適合小兒氣喘的次級資料嚴重度分級模式。
研究結果:在嚴重度分級模式中,觀察各閾值存活曲線以及專家的討論後,認為採用閾值50%作為後續嚴重度用藥組合比例的閾值較為適當,後續的嚴重度分析上發現嚴重度與急性發作在存活分析曲線各組間存在顯著差異,嚴重度越大的小兒氣喘病人,其急性發作發生的風險越高。在經過合併級別成三級及兩級之後,嚴重度與急性發作之間的存活分析曲線也存在顯著差異,嚴重度越大的氣喘病人,其急性發作的發生風險也越高。而在分級模式的驗證上,嚴重度與急性發作在存活分析曲線上各級趨近顯著,在經過合併級別成三級及兩級之後,嚴重度與急性發作在存活分析曲線上各級達到顯著差異。
結論與建議:本研究探討氣喘嚴重度的分級模式建立,在無法獲得初級臨床資料下,發展出適合小兒氣喘的次級資料嚴重度分級模式,得到良好的研究結果。在利用不同年度進行分級模式的模型驗證,利用相同的模型套用至不同年度的次級資料也具有相同的適用程度,此方法的建立後可在缺乏臨床資料下也能建立屬於小兒氣喘的嚴重度分級模式。對未來的建議包含可將小兒氣喘嚴重度分級模式用於後續的研究應用上,例如氣喘給付改善方案等論質計酬的相關研究。
zh_TW
dc.description.abstractBackground and purpose: Asthma is a common chronic respiratory disease. There is a correlation between asthma mortality and asthma severity. Different treatment strategies must be adopted by grading assessment of asthma severity. Therefore, asthma severity plays a very important role in the care of asthma and quality. According to the guidelines for asthma diagnosis and treatment published by Taiwan Asthma Council, children and adolescents are the main ethnic groups of asthma. Adults and children should also adopt different assessment methods. Therefore, it is necessary to develop a severity classification model suitable for children with asthma. At present, there is no clear consensus on the grading of severity. In the past, there were many guidelines attempt to establish and fill the gap in the severity of secondary data. However, there is no uniform and best criterion. Many criteria and materials must be integrated. Also, some development methods use many criteria to develop a severity model of secondary data. At the same time, it must also be revised for each country. Therefore, this study aims to develop a pediatric asthma severity classification model that belongs to Taiwan's secondary data. The classification of severity on the criteria is very complicated and diversified, and it is also necessary for its validation of the criteria. In the past, the severity classification model for secondary data is lack in validation after establishment. Therefore, the validation analysis after the establishment of the severity classification is worthy of discussion and research, in order to have a certain effect and adaptability to the development of the secondary data severity classification model. To sum up, the purpose of this study is to explore and establish a secondary data classification model for asthma in children, and to verify the classification of severe asthma severity in children.
Materials and Methods: This study used National Health Insurance Research Database to establish a new case of asthma in children in 2011. According to the new cases, the patients were classified according to the asthma-related medication records, and the classified medications divided into three types of drug combinations group, and the patient's severity classification is established according to the ratio of the three types of severity medication groups of each patient, and the threshold ratio develops to classify three severity level. Subsequent statistical analysis of the grading model, including survival analysis using Kaplan-Meier curves, Logistic regression and Cox Proportional Hazard Model to explore the risk relationship between severity and acute exacerbation, and the validation after grading model establishment, adaptability of the severity model, and finally developed a severity model suitable for children with asthma in secondary data.
Results: After observing the threshold survival curves and the expert's discussion, it is considered to use the threshold of 50% as the threshold for standard of the drug group ratio, and the severity analysis found association between severity and acute exacerbation. The results found that the greater the severity of pediatric asthma patients, the higher the risk of acute exacerbation. There is also a significant difference in the survival analysis curve between severity and acute exacerbation after the combined level of three levels. In the validation of the model, the severity and acute exacerbation are significantly at all levels on the survival analysis curve. After the merging level becomes three levels, the severity and acute exacerbation are significant at all levels on the survival analysis curve.

Conclusion and suggestions: This study explored the establishment of a classification model for asthma severity. Under the condition that primary clinical data could not be obtained, a secondary data severity classification model suitable for children with asthma was developed, and good results were obtained. In the model validation using the different years of the model, the same model can be applied to the secondary data of different years would have the same applicability. After the establishment of this method, the severity of pediatric asthma can be established in the absence of clinical data. Suggestions for the research include the use of the pediatric asthma severity model for further research applications, such as the policy of Pay for Performance and the other related applications.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:01:00Z (GMT). No. of bitstreams: 1
ntu-108-R05848024-1.pdf: 3667279 bytes, checksum: 3dfc47f97d6cfe1a17d150e932a3ea76 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員審定書 i
謝辭 ii
摘要 iii
Abstract v
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究問題與重要性 3
第三節 研究目的 4
第二章 文獻探討 5
第一節 氣喘 5
第二節 氣喘嚴重度相關研究 8
第三節 氣喘模型驗證 15
第四節 文獻探討總結 17
第三章 研究方法 18
第一節 研究流程 18
第二節 研究材料與研究對象 19
第三節 研究方法 20
第四節 研究變項與操作型定義 25
第五節 統計方法 30
第四章 研究結果 32
第一節 嚴重度分級模式 32
第二節 嚴重度分級模式驗證 55
第三節 多變項分析 78
第五章 討論 85
第一節 小兒氣喘嚴重度分級模式 85
第二節 小兒氣喘嚴重度分級模式驗證 89
第三節 研究限制 92
第六章 結論與建議 95
第一節 結論 95
第二節 建議 96
參考文獻 98
附錄一 申報資料中疾病嚴重度與指引遵從率之探討專家會議紀錄 103
附錄二 六大類用藥之藥品與其代碼 106
dc.language.isozh-TW
dc.title小兒氣喘在次級資料中之嚴重度模型建立與驗證zh_TW
dc.titleDevelopment and Validation of Severity Model for Childhood Asthma in Claims Dataen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee游宗憲,鄭之勛,林寬佳
dc.subject.keyword氣喘,小兒氣喘,氣喘嚴重度,分級模式,驗證,次級資料,閾值,zh_TW
dc.subject.keywordAsthma,Pediatric asthma,Asthma severity,Severity model,Validation,Secondary data,Threshold,en
dc.relation.page110
dc.identifier.doi10.6342/NTU201900381
dc.rights.note有償授權
dc.date.accepted2019-02-12
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept健康政策與管理研究所zh_TW
顯示於系所單位:健康政策與管理研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
3.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved