Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71452
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor于昌平
dc.contributor.authorLi-Hsun Huangen
dc.contributor.author黃立勛zh_TW
dc.date.accessioned2021-06-17T06:00:59Z-
dc.date.available2019-02-15
dc.date.copyright2019-02-15
dc.date.issued2019
dc.date.submitted2019-02-11
dc.identifier.citationAbourached, Carole, TuncCatal, andHongLiu. 2014. “Efficacy of Single-Chamber Microbial Fuel Cells for Removal of Cadmium and Zinc with Simultaneous Electricity Production.” Water Research 51:228–33.
Achim, Marcela et al. 2009. “Thermosensitive Liposomes Containing Doxorubicin. Preparation and in Vitro Evaluation.” Farmacia 57(6):703–10.
Abourached, Carole, TuncCatal, andHongLiu. 2014. “Efficacy of Single-Chamber Microbial Fuel Cells for Removal of Cadmium and Zinc with Simultaneous Electricity Production.” Water Research 51:228–33.
Achim, Marcela et al. 2009. “Thermosensitive Liposomes Containing Doxorubicin. Preparation and in Vitro Evaluation.” Farmacia 57(6):703–10.
Aelterman, Peter, KorneelRabaey, Hai ThePham, NicoBoon, andWillyVerstraete. 2006. “Continuous Electricity Generation at High Voltages and Currents Using Stacked Microbial Fuel Cells.” Environmental Science and Technology 40(10):3388–94.
Aelterman, Peter, KorneelRabaey, andWillyVerstraete. 2006. “Continuous Electricity Generation at High Voltages and Currents Using Stacked Microbial Fuel Cells - Environmental Science & Technology (ACS Publications).” 40(10):3388–94.
Bergel, Alain, DamienFéron, andAlfonsoMollica. 2005. “Catalysis of Oxygen Reduction in PEM Fuel Cell by Seawater Biofilm.” Electrochemistry Communications 7(9):900–904.
Bond, Daniel R., Daniel R.Bond, Dawn E.Holmes, andLeonard M.Tender. 2010. “Electrode-Reducing Microorganisms That Harvest Energy from Marine Sediments.” Science 295(2002):483–85.
Cusick, Roland D. andBruce E.Logan. 2012. “Phosphate Recovery as Struvite within a Single Chamber Microbial Electrolysis Cell.” Bioresource Technology 107:110–15.
Feng, Cuijie et al. 2014. “Characterization of Exoelectrogenic Bacteria Enterobacter Strains Isolated from a Microbial Fuel Cell Exposed to Copper Shock Load.” PLoS ONE 9(11).
Feng, Yujie, XinWang, Bruce E.Logan, andHeLee. 2008. “Brewery Wastewater Treatment Using Air-Cathode Microbial Fuel Cells.” Applied Microbiology and Biotechnology 78(5):873–80.
Fischer, Fabian, ChristèleBastian, ManuelHappe, EricMabillard, andNicolasSchmidt. 2011. “Microbial Fuel Cell Enables Phosphate Recovery from Digested Sewage Sludge as Struvite.” Bioresource Technology 102(10):5824–30.
Forrestal, Casey, ZheHuang, andZhiyong JasonRen. 2014. “Percarbonate as a Naturally Buffering Catholyte for Microbial Fuel Cells.” Bioresource Technology 172:429–32.
Freguia, Stefano, SeiyaTsujimura, andKenjiKano. 2010. “Electron Transfer Pathways in Microbial Oxygen Biocathodes.” Electrochimica Acta 55(3):813–18.
Happe, Manuel et al. 2016. “Scale-up of Phosphate Remobilization from Sewage Sludge in a Microbial Fuel Cell.” Bioresource Technology 200:435–43.
He, Chuan Shu et al. 2015. “Electron Acceptors for Energy Generation in Microbial Fuel Cells Fed with Wastewaters: A Mini-Review.” Chemosphere 140:12–17.
TerHeijne, Annemiek, Hubertus V. M.Hamelers, VinnieDeWilde, René A.Rozendal, andCees J. N.Buisman. 2006. “A Bipolar Membrane Combined with Ferric Iron Reduction as an Efficient Cathode System in Microbial Fuel Cells.” Environmental Science and Technology 40(17):5200–5205.
Hirooka, K. andO.Ichihashi. 2013. “Phosphorus Recovery from Artificial Wastewater by Microbial Fuel Cell and Its Effect on Power Generation.” Bioresource Technology 137:368–75.
Huang, Haiming, QianwuSong, WenjunWang, ShaoweiWu, andJiankunDai. 2012. “Treatment of Anaerobic Digester Effluents of Nylon Wastewater through Chemical Precipitation and a Sequencing Batch Reactor Process.” Journal of Environmental Management 101:68–74.
Ichihashi, O. andK.Hirooka. 2012. “Removal and Recovery of Phosphorus as Struvite from Swine Wastewater Using Microbial Fuel Cell.” Bioresource Technology 114:303–7.
Kelly, Patrick T. andZhenHe. 2014. “Bioresource Technology Nutrients Removal and Recovery in Bioelectrochemical Systems : A Review.” Bioresource Technology 153:351–60.
Kim, Byung Hong, In SeopChang, Geun CheolGil, Hyung SooPark, andHyung JooKim. 2003. “Novel BOD (Biological Oxygen Demand) Sensor Using Mediator-Less Microbial Fuel Cell.” Biotechnology Letters 25(7):541–45.
Kim, Hyung Joo et al. 2002. “A Mediator-Less Microbial Fuel Cell Using a Metal Reducing Bacterium, Shewanella Putrefaciens.” Enzyme and Microbial Technology 30(2):145–52.
Kim, Jung Rae, ShaoanCheng, Sang-EuhOh, andBruce E.Logan. 2007. “Membranes in Microbial Fuel Cells.” Environmental Science & Technology 41(3):1004–9.
Kim, Younggy andBruce E.Logan. 2013. “Microbial Desalination Cells for Energy Production and Desalination.” Desalination 308:122–30.
Koralewska, Joanna, KrzysztofPiotrowski, BoguslawaWierzbowska, andAndrzejMatynia. 2009. “Kinetics of Reaction-Crystallization of Struvite in the Continuous Draft Tube Magma Type Crystallizers-Influence of Different Internal Hydrodynamics.” Chinese Journal of Chemical Engineering 17(2):330–39.
Kumar, Ramesh andParimalPal. 2015. “Assessing the Feasibility of N and P Recovery by Struvite Precipitation from Nutrient-Rich Wastewater: A Review.” Environmental Science and Pollution Research 22(22):17453–64.
Kuntke, P. et al. 2012. “Ammonium Recovery and Energy Production from Urine by a Microbial Fuel Cell.” Water Research 46(8):2627–36.
Ledezma, Pablo, PhilippKuntke, Cees J. N.Buisman, JürgKeller, andStefanoFreguia. 2015. “Source-Separated Urine Opens Golden Opportunities for Microbial Electrochemical Technologies.” Trends in Biotechnology 33(4):214–20.
Leong, Jun Xing, Wan Ramli WanDaud, MostafaGhasemi, KienBenLiew, andManalIsmail. 2013. “Ion Exchange Membranes as Separators in Microbial Fuel Cells for Bioenergy Conversion: A Comprehensive Review.” Renewable and Sustainable Energy Reviews 28:575–87.
Li, Wen-Wei, Han-QingYu, andZhenHe. 2013. “Towards Sustainable Wastewater Treatment by Using Microbial Fuel Cells-Centered Technologies.” Energy Environ. Sci. 7(3):911–24.
Liu, Hong andBruce E.Logan. 2004. “Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane.” Environmental Science and Technology 38(14):4040–46.
Logan, Bruce, ShaoanCheng, ValerieWatson, andGarettEstadt. 2007. “Graphite Fiber Brush Anodes for Increased Power Production in Air-Cathode Microbial Fuel Cells.” Environmental Science and Technology 41(9):3341–46.
Logan, Bruce E. et al. 2006. “Microbial Fuel Cells: Methodology and Technology.” Environmental Science and Technology 40(17):5181–92.
Matynia, Andrzej et al. 2013. “Separation of Struvite from Mineral Fertilizer Industry Wastewater.” Procedia Environmental Sciences 18(December):766–75.
Merino-Jimenez, Irene, VeronicaCelorrio, David J.Fermin, JohnGreenman, andIoannisIeropoulos. 2017a. “Enhanced MFC Power Production and Struvite Recovery by the Addition of Sea Salts to Urine.” Water Research 109:46–53.
Merino-Jimenez, Irene, VeronicaCelorrio, David J.Fermin, JohnGreenman, andIoannisIeropoulos. 2017b. “Enhanced MFC Power Production and Struvite Recovery by the Addition of Sea Salts to Urine.” Water Research 109:46–53.
Min, Booki, ShaoanCheng, andBruce E.Logan. 2005. “Electricity Generation Using Membrane and Salt Bridge Microbial Fuel Cells.” Water Research 39(9):1675–86.
Min, Booki andBruce E.Logan. 2017. “Continuous Electricity Generation from Domestic Wastewater and Organic Substrates in a Flat Plate Microbial Fuel Cell.” Biological Psychiatry 82(6):431–39.
Nancharaiah, Y.V., S.Venkata Mohan, andP. N. L.Lens. 2015. “Metals Removal and Recovery in Bioelectrochemical Systems: A Review.” Bioresource Technology 195:102–14.
Nancharaiah, Y.V., S.Venkata Mohan, andP. N. L.Lens. 2016. “Recent Advances in Nutrient Removal and Recovery in Biological and Bioelectrochemical Systems.” Bioresource Technology 215:173–85.
Nelson, Nathan O., Robert L.Mikkelsen, andDean L.Hesterberg. 2003. “Struvite Precipitation in Anaerobic Swine Lagoon Liquid: Effect of PH and Mg:P Ratio and Determination of Rate Constant.” Bioresource Technology 89(3):229–36.
Oh, Sang Eun andBruce E.Logan. 2005. “Hydrogen and Electricity Production from a Food Processing Wastewater Using Fermentation and Microbial Fuel Cell Technologies.” Water Research 39(19):4673–82.
Oh, Sang Eun andBruce E.Logan. 2006. “Proton Exchange Membrane and Electrode Surface Areas as Factors That Affect Power Generation in Microbial Fuel Cells.” Applied Microbiology and Biotechnology 70(2):162–69.
Oh, Sangeun, BookiMin, andBruce E.Logan. 2004. “Cathode Performance as a Factor in Electricity Generation in Microbial Fuel Cells.” Environmental Science and Technology 38(18):4900–4904.
Park, D. O. O. Hyun. 2000. “Electricity Generation in Microbial Fuel Cells Using Neutral Red as an Electronophore Downloaded from Http://Aem.Asm.Org/ on September 27 , 2017 by INDIAN INST OF TECHNOLOGY Kharagpur.” 66(4):1292–97.
Parsons, S. A. andJ. D.Doyle. 2002. “Struvite Formation, Control and Recovery.” Water Research 36(16):3925–40.
Potter, M. C. 1911. “Electrical Effects Accompanying the Decomposition of Organic Compounds.” Proceedings of the Royal Society B: Biological Sciences 84(571):260–76.
René A. Rozendal, Hubertus V. M. Hamelers, andCees J. N. Buisman. 2006. “Effects of Membrane Cation Transport on PH and Microbial Fuel Cell Performance.” Environmental Science and Technology 40(17):5206–5211.
Santoro, C. et al. 2013. “Power Generation and Contaminant Removal in Single Chamber Microbial Fuel Cells (SCMFCs) Treating Human Urine.” International Journal of Hydrogen Energy 38(26):11543–51.
Sleutels, Tom H. J. A., Hubertus V. M.Hamelers, René A.Rozendal, andCees J. N.Buisman. 2009. “Ion Transport Resistance in Microbial Electrolysis Cells with Anion and Cation Exchange Membranes.” International Journal of Hydrogen Energy 34(9):3612–20.
Tao, Qinqin, ShaoqiZhou, JingjingLuo, andJinpengYuan. 2015a. “Nutrient Removal and Electricity Production from Wastewater Using Microbial Fuel Cell Technique.” Desalination 365:92–98.
Tao, Qinqin, ShaoqiZhou, JingjingLuo, andJinpengYuan. 2015b. “Nutrient Removal and Electricity Production from Wastewater Using Microbial Fuel Cell Technique.” Desalination 365:92–98.
Tice, Ryan C. andYounggyKim. 2014. “Energy Efficient Reconcentration of Diluted Human Urine Using Ion Exchange Membranes in Bioelectrochemical Systems.” Water Research 64:61–72.
Xia, Wei, AsifMahmood, ZibinLiang, RuqiangZou, andShaojunGuo. 2016. “Earth-Abundant Nanomaterials for Oxygen Reduction.” Angewandte Chemie - International Edition 55(8):2650–76.
Ye, Yuanyao et al. 2016. “Insight into Biological Phosphate Recovery from Sewage.” Bioresource Technology 218:874–81.
Yetilmezsoy, Kaan andZehraSapci-Zengin. 2009. “Recovery of Ammonium Nitrogen from the Effluent of UASB Treating Poultry Manure Wastewater by MAP Precipitation as a Slow Release Fertilizer.” Journal of Hazardous Materials 166(1):260–69.
You, Jiseon, JohnGreenman, ChrisMelhuish, andIoannisIeropoulos. 2016a. “Electricity Generation and Struvite Recovery from Human Urine Using Microbial Fuel Cells.” Journal of Chemical Technology and Biotechnology 91(3):647–54.
You, Jiseon, JohnGreenman, ChrisMelhuish, andIoannisIeropoulos. 2016b. “Electricity Generation and Struvite Recovery from Human Urine Using Microbial Fuel Cells.” Journal of Chemical Technology & Biotechnology 91(3):647–54.
Zang, Guo-Long et al. 2012. “Nutrient Removal and Energy Production in a Urine Treatment Process Using Magnesium Ammonium Phosphate Precipitation and a Microbial Fuel Cell Technique.” Physical Chemistry Chemical Physics 14(6):1978.
Zang, Guo Long et al. 2012. “Nutrient Removal and Energy Production in a Urine Treatment Process Using Magnesium Ammonium Phosphate Precipitation and a Microbial Fuel Cell Technique.” Physical Chemistry Chemical Physics 14(6):1978–84.
Zhang, Xiaoyuan et al. 2015. “COD Removal Characteristics in Air-Cathode Microbial Fuel Cells.” Bioresource Technology 176:23–31.
Zhang, Xuan Hua, Hai MinGuo, Jia CaiDai, XinYan, andLi XianHuang. 2002. “Method for Determining Water Holdup with RST Well Logging Data.” Jianghan Shiyou Xueyuan Xuebao/Journal of Jianghan Petroleum Institute 24(1):33–34+IV.
Zhao, Feng et al. 2005. “Application of Pyrolysed Iron(II) Phthalocyanine and CoTMPP Based Oxygen Reduction Catalysts as Cathode Materials in Microbial Fuel Cells.” Electrochemistry Communications 7(12):1405–10.
Zhuang, Li andShunguiZhou. 2009. “Substrate Cross-Conduction Effect on the Performance of Serially Connected Microbial Fuel Cell Stack.” Electrochemistry Communications 11(5):937–40.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71452-
dc.description.abstract隨著全球人口快速增加,能源的使用大幅提升,導致全球暖化的現象,因此再生能源和水資源處理技術逐年受到重視。微生物燃料電池(Microbial Fuel Cell, MFC)為一種生物電化學技術,此技術在運行時,能同時有產電和廢水處理的功能,可用於作為生質能和降解廢水中之有機質。另外,由於製造肥料所需,全球磷礦的開採量增加,又加上磷礦自然形成速度緩慢,導致磷礦資源消耗逐年加劇。近年,科學家嘗試從人類尿液中,以沉澱的方式回收一種磷的礦物進行再利用,此磷礦沉澱物為鳥糞石(struvite, NH4MgPO4·6H2O),而沉澱反應需在鹼性環境下進行,當雙槽式MFC在運行時,其陰極槽的部分為鹼性環境,可以進行鳥糞石沉澱。因此本研究主要探討MFC處理人工尿液時,其有機質降解成效、產電效能和磷回收的效果。
本研究不同於以往文獻中使用單槽式MFC來進行尿液中的磷回收,改使用平板雙槽式MFC處理人工尿液,槽體分為陽極槽和陰極槽,兩槽中間以薄膜進行區隔。陽極進行微生物降解有機質的反應,陰極進行曝氣和鳥糞石沉澱之反應。兩槽中的電極皆使用石墨氈。本研究同時比較陰極電極改質與不同薄膜對產電效果之影響,此改質為電極進行催化塗層,使用的催化劑為鈦菁鐵(iron phthalocyanine, FePc),薄膜則分為陽離子交換膜、陰離子交換膜和質子交換膜。本實驗在水質、產能和磷回收部分進行探討。結果顯示化學需氧量之去除率最高可達93.7%。而使用質子交換膜時可以獲得較高之電壓,並產生最高功率密度78.14 mW/m2。使用質子交換膜時,成功地在陰極槽中獲得鳥糞石沉澱。
zh_TW
dc.description.abstractThe potential of two-chambers microbial fuel cells (MFCs) for treating synthetic human urine has been investigated. In the treatment, there are not only the degradation of organic matter but also the recycling of phosphate as struvite (magnesium ammonium phosphate, NH4MgPO4·6H2O). In this study, we used the flat plate MFC (FPMFC), which was made up of an anode and a cathode. The two chambers were separated by the membrane. The anode with channel, where the microorganism degrade substrate, was operated as a plug flow reactor, and the anode was inoculated with anaerobic sludge obtained from a wastewater treatment plant. The cathode without channel was continuously aerated, and the precipitation of struvite will occur with the alkaline environment in the cathode. We adopted graphite felt for the electrode and investigated supported iron phthalocyanine (FePc) as the catalyst for the oxygen reduction reaction (ORR). Cation exchange membrane, anion exchange membrane and proton exchange membrane were used in the FPMFC to test which one is good for electricity production. Organic matter can be degraded effectively by using FPMFC and the maximum removal efficiency is 93.7%. When we use the proton exchange membrane, the FPMFC have the high voltage output and the maximum power density is 78.14 mW/m2. By adding magnesium dichloride, we got the struvite in the cathode from synthetic urine.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:00:59Z (GMT). No. of bitstreams: 1
ntu-108-R05541121-1.pdf: 3246460 bytes, checksum: 62d6d9fe83b128bb4fd15bc128b39bb6 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents論文口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 viii
第一章 緒論 1
1.1. 研究背景 1
1.2. 研究動機與目的 2
1.3. 研究架構圖 4
第二章 文獻回顧 5
2.1. 微生物燃料電池之理論和發展 5
2.1.1. 生物電化學系統之演進 5
2.1.2. 微生物燃料電池產電原理 6
2.1.3. 生物電化學系統應用 8
2.2. 微生物燃料電池組態設計 9
2.2.1. 微生物燃料電池陰極 9
2.2.2. 微生物燃料電池之構型 11
2.2.3. 微生物燃料電池之薄膜 14
2.3. 磷酸銨鎂沉澱應用於磷之回收 15
2.3.1. 磷酸銨鎂沉澱反應 15
2.3.2. 微生物燃料電池應用於磷之回收 16
第三章 材料與方法 17
3.1. 實驗藥品與設備 17
3.1.1. 實驗藥品 17
3.1.2. 實驗設備與儀器 20
3.2. 平板式微生物燃料電池系統 21
3.2.1. 平板式微生物燃料電池組態 21
3.2.2. 菌種來源與馴養 22
3.2.3. 平板式微生物燃料電池電極製備 22
3.2.4. 平板式微生物燃料電池薄膜準備 23
3.2.5. 平板式微生物燃料電池運行 24
3.3. 平板式微生物燃料電池產電能力分析 29
3.3.1. 電壓量測與紀錄 29
3.3.2. 內電阻分析 29
3.3.3. 內電阻和最大功率密度測定 33
3.3.4. 單極電位分析 33
3.4. 平板式微生物燃料電池之磷回收能力 34
3.4.1. 磷酸銨鎂沉澱試驗 34
3.4.2. 磷酸銨鎂沉澱物分析 35
3.5. 平板式微生物燃料電池之水質分析 36
3.5.1. 化學需氧量 36
3.5.2. pH值 36
3.5.3. 氨氮 36
3.5.4. 水中陰離子檢測方法─離子層析法 36
第四章 結果與討論 37
4.1. 平板式微生物燃料電池去除有機質表現 37
4.1.1. 有無塗覆催化劑去除效果比較 37
4.1.2. 不同薄膜去除效果比較 37
4.2. 平板式微生物燃料電池產電效能 41
4.2.1. 馴養期之產電狀況 41
4.2.2. 有無塗覆催化劑產電效能比較 42
4.2.2.1. 電壓大小比較 42
4.2.2.2. 最大功率密度和內電阻比較 42
4.2.2.3. 單極電位比較 42
4.2.3. 不同薄膜產電效能比較 45
4.2.3.1. 電壓大小比較 45
4.2.3.2. 最大功率密度和內電阻比較 45
4.3. 平板式微生物燃料電池之磷回收 48
4.3.1. 陽離子交換膜應用於磷回收 48
4.3.2. 質子交換膜應用於磷回收 50
4.3.3. 陰離子交換膜應用於磷回收 55
4.3.4. 磷酸銨鎂沉澱測試 55
4.3.5. 磷酸銨鎂沉澱物分析 59
第五章 結論與建議 61
5.1. 結論 61
5.2. 建議 62
參考文獻 63
dc.language.isozh-TW
dc.title雙槽平板式微生物燃料電池產能和磷回收研究zh_TW
dc.titlePower Generation and Phosphate Recovery Using Two-Chambers Flat Plate Microbial Fuel Cellen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee黃郁慈,童心欣
dc.subject.keyword微生物燃料電池,尿液處理,磷回收,鳥糞石,zh_TW
dc.subject.keywordmicrobial fuel cell,membrane,urine treatment,phosphate recovery,struvite,en
dc.relation.page69
dc.identifier.doi10.6342/NTU201900430
dc.rights.note有償授權
dc.date.accepted2019-02-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
3.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved