Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7142
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡沛學zh_TW
dc.contributor.author林宛臻zh_TW
dc.contributor.authorWan-Zhen Linen
dc.date.accessioned2021-05-19T17:39:47Z-
dc.date.available2024-08-16-
dc.date.copyright2019-08-23-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] W.C. YOUNG, A Study of the Function of the Epididymis: III. Functional Changes Undergone by Spermatozoa During Their Passage Through the Epididymis and Vas Deferens in the Guinea-Pig, Journal of Experimental Biology 8(2) (1931) 151-162.
[2] J. Bedford, Effects of duct ligation on the fertilzing ability of spermatozoa from different regions of the rabbit epididymis, Journal of Experimental Zoology 166(2) (1967) 271-281.
[3] M. Orgebin-Crist, Sperm maturation in rabbit epididymis, Nature 216(5117) (1967) 816.
[4] J. Martan, Epididymal histochemistry and physiology, Biology of reproduction 1(suppl_1) (1969) 134-154.
[5] W.W. Shum, N. Da Silva, D. Brown, S. Breton, Regulation of luminal acidification in the male reproductive tract via cell–cell crosstalk, Journal of Experimental Biology 212(11) (2009) 1753-1761.
[6] J.-L. Dacheux, S. Castella, J.L. Gatti, F. Dacheux, Epididymal cell secretory activities and the role of proteins in boar sperm maturation, Theriogenology 63(2) (2005) 319-341.
[7] M. Gregory, D.G. Cyr, The blood-epididymis barrier and inflammation, Spermatogenesis 4(2) (2014) e979619.
[8] J.-L. Dacheux, F. Dacheux, New insights into epididymal function in relation to sperm maturation, Reproduction 147(2) (2014) R27-R42.
[9] B. Nixon, G.N. De Iuliis, H.M. Hart, W. Zhou, A. Mathe, I.R. Bernstein, A.L. Anderson, S.J. Stanger, D.A. Skerrett-Byrne, M.F.B. Jamaluddin, Proteomic profiling of mouse epididymosomes reveals their contributions to post-testicular sperm maturation, Molecular & Cellular Proteomics 18(Supplement 1) (2019) S91-S108.
[10] A. Akintayo, C. Légaré, R. Sullivan, Dicarbonyl L-xylulose reductase (DCXR), a "moonlighting protein" in the bovine epididymis, PloS one 10(3) (2015) e0120869-e0120869.
[11] H.I. Calvin, J.M. Bedford, Formation of disulphide bonds in the nucleus and accessory structures of mammalian spermatozoa during maturation in the epididymis, J Reprod Fertil Suppl 13 (1971) Suppl 13:65-75.
[12] R. Shalgi, J. Seligman, N.S. Kosower, Dynamics of the thiol status of rat spermatozoa during maturation: analysis with the fluorescent labeling agent monobromobimane, Biol Reprod 40(5) (1989) 1037-45.
[13] H. Moore, Contribution of epididymal factors to sperm maturation and storage, Andrologia 30(4‐5) (1998) 233-239.
[14] J. Bedford, The maturation of spermatozoa in the human epididymis, J Reprod Fertil (supple) 18 (1973) 199-213.
[15] M.E. Cabrillana, M. de los Ángeles Monclus, T.E.S. Lancellotti, P.V. Boarelli, A.E. Vincenti, M.M. Fornés, E.A. Sanabria, M.W. Fornés, Thiols of flagellar proteins are essential for progressive motility in human spermatozoa, Reproduction, Fertility and Development 29(7) (2017) 1435-1446.
[16] C. Jeulin, L.M. Lewin, C. Chevrier, D. Schoevaert‐Brossault, Changes in flagellar movement of rat spermatozoa along the length of the epididymis: Manual and computer‐aided image analysis, Cell motility and the cytoskeleton 35(2) (1996) 147-161.
[17] L. Hetherington, E.K. Schneider, C. Scott, D. DeKretser, C.H. Muller, H. Hondermarck, T. Velkov, M.A. Baker, Deficiency in Outer Dense Fiber 1 is a marker and potential driver of idiopathic male infertility, Molecular & Cellular Proteomics 15(12) (2016) 3685-3693.
[18] D. Evenson, L. Jost, D. Marshall, M. Zinaman, E. Clegg, K. Purvis, P. De Angelis, O. Claussen, Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic, Human reproduction 14(4) (1999) 1039-1049.
[19] H.I. Calvin, C.C. Yu, J.M. Bedford, Effects of epididymal maturation, zinc (II) and copper (II) on the reactive sulfhydryl content of structural elements in rat spermatozoa, Exp Cell Res 81(2) (1973) 333-41.
[20] J.M. Hutchison, D.C. Rau, J.E. DeRouchey, Role of Disulfide Bonds on DNA Packaging Forces in Bull Sperm Chromatin, Biophys J 113(9) (2017) 1925-1933.
[21] R. Balhorn, The protamine family of sperm nuclear proteins, Genome biology 8(9) (2007) 227.
[22] M.A. Szczygiel, W.S. Ward, Combination of dithiothreitol and detergent treatment of spermatozoa causes paternal chromosomal damage, Biology of reproduction 67(5) (2002) 1532-1537.
[23] J. Bedford, H. Calvin, Changes in S S linked structures of the sperm tail during epididymal maturation, with comparative observations in sub‐mammalian species, Journal of Experimental Zoology 187(2) (1974) 181-203.
[24] B. Benayoun, A. Esnard-Fève, S. Castella, Y. Courty, F. Esnard, Rat Seminal Vesicle FAD-dependent Sulfhydryl Oxidase BIOCHEMICAL CHARACTERIZATION AND MOLECULAR CLONING OF A MEMBER OF THE NEW SULFHYDRYL OXIDASE/QUIESCIN Q6 GENE FAMILY, Journal of Biological Chemistry 276(17) (2001) 13830-13837.
[25] T. Chang, B.R. Zirkin, Distribution of sulfhydryl oxidase activity in the rat and hamster male reproductive tract, Biology of reproduction 18(5) (1978) 745-748.
[26] M.C. Ostrowski, W. Kistler, Properties of a flavoprotein sulfhydryl oxidase from rat seminal vesicle secretion, Biochemistry 19(12) (1980) 2639-2645.
[27] D.L. Coppock, C. Kopman, S. Scandalis, S. Gilleran, Preferential gene expression in quiescent human lung fibroblasts, Cell growth and differentiation 4 (1993) 483-483.
[28] I. Grossman, A. Alon, T. Ilani, D. Fass, An inhibitory antibody blocks the first step in the dithiol/disulfide relay mechanism of the enzyme QSOX1, Journal of molecular biology 425(22) (2013) 4366-4378.
[29] C. Thorpe, K.L. Hoober, S. Raje, N.M. Glynn, J. Burnside, G.K. Turi, D.L. Coppock, Sulfhydryl oxidases: emerging catalysts of protein disulfide bond formation in eukaryotes, Archives of biochemistry and biophysics 405(1) (2002) 1-12.
[30] J.-F. Musard, M. Sallot, P. Dulieu, A. Fraîchard, C. Ordener, J.-P. Remy-Martin, M. Jouvenot, P. Adami, Identification and expression of a new sulfhydryl oxidase SOx-3 during the cell cycle and the estrus cycle in uterine cells, Biochemical and biophysical research communications 287(1) (2001) 83-91.
[31] A. Tury, G. Mairet-Coello, F. Poncet, C. Jacquemard, P. Risold, D. Fellmann, B. Griffond, QSOX sulfhydryl oxidase in rat adenohypophysis: localization and regulation by estrogens, Journal of endocrinology 183(2) (2004) 353-363.
[32] G. Mairet‐Coello, A. Tury, A. Esnard‐Feve, D. Fellmann, P.Y. Risold, B. Griffond, FAD‐linked sulfhydryl oxidase QSOX: Topographic, cellular, and subcellular immunolocalization in adult rat central nervous system, Journal of Comparative Neurology 473(3) (2004) 334-363.
[33] D. Coppock, C. Kopman, J. Gudas, D.A. Cina-Poppe, Regulation of the quiescence-induced genes: quiescin Q6, decorin, and ribosomal protein S29, Biochemical and biophysical research communications 269(2) (2000) 604-610.
[34] S. Chakravarthi, C.E. Jessop, M. Willer, C.J. Stirling, N.J. Bulleid, Intracellular catalysis of disulfide bond formation by the human sulfhydryl oxidase, QSOX1, Biochemical Journal 404(3) (2007) 403-411.
[35] T.-E. Wang, S.-H. Li, S. Minabe, A.L. Anderson, M.D. Dun, K.-I. Maeda, F. Matsuda, H.-W. Chang, B. Nixon, P.-S.J. Tsai, Mouse quiescin sulfhydryl oxidases exhibit distinct epididymal luminal distribution with segment-specific sperm surface associations, Biology of reproduction 99(5) (2018) 1022-1033.
[36] T. Chang, B. Morton, Epididymal sulfhydryl oxidase: a sperm-protective enzyme from the male reproductive tract, Biochemical and biophysical research communications 66(1) (1975) 309-315.
[37] B. Hinton, Z. Lan, D. Rudolph, J. Labus, R. Lye, Testicular regulation of epididymal gene expression, Journal of reproduction and fertility. Supplement 53 (1998) 47-57.
[38] X. Liu, F. Liu, In‑depth mapping of human testicular and epididymal proteins and their functional association with spermatozoa, Molecular medicine reports 12(1) (2015) 173-179.
[39] J.-L. Gatti, X. Druart, Y. Guérin, F. Dacheux, J.-L. Dacheux, A 105-to 94-kilodalton protein in the epididymal fluids of domestic mammals is angiotensin I-converting enzyme (ACE); evidence that sperm are the source of this ACE, Biology of reproduction 60(4) (1999) 937-945.
[40] E. Casillas, P. Villalobos, R. Gonzales, Distribution of carnitine and acylcarnitine in the hamster epididymis and in epididymal spermatozoa during maturation, Reproduction 72(1) (1984) 197-201.
[41] L. Hermo, B. Robaire, The epididymis from molecular to clinical practice. A comprehensive survey of the efferent ducts, the epididymis and the vas deferens, Epididymal cell types and their functions. New York: Kluwer Academic/Plenum Publishers (2002) 81-102.
[42] A.P. Hoffer, D.W. Hamilton, D.W. Fawcett, The ultrastructure of the principal cells and intraepithelial leucocytes in the initial segment of the rat epididymis, The Anatomical Record 175(2) (1973) 169-201.
[43] B. Robaire, L. Hermo, Efferent ducts, epididymis, and vas deferens: structure, functions, and their regulation, The physiology of reproduction 1 (1988) 999-1080.
[44] L. Nicander, Comparative studies on the fine structure of vertebrate spermatozoa, Academic Press, New York (1970) 47-56.
[45] L. Nicander, T. Glover, Regional histology and fine structue of the epididymal duct in the golden hamster (Mesocricetus auratus), Journal of anatomy 114(Pt 3) (1973) 347.
[46] L. Nicander, M. Malmqvist, Ultrastructural observations suggesting merocrine secretion in the initial segment of the mammalian epididymis, Cell and tissue research 184(4) (1977) 487-490.
[47] R.B. Kelly, Pathways of protein secretion in eukaryotes, Science 230(4721) (1985) 25-32.
[48] M. Steinhoff, W. Eicheler, P. Holterhus, U. Rausch, J. Seitz, G. Aumüller, Hormonally induced changes in apocrine secretion of transglutaminase in the rat dorsal prostate and coagulating gland, European journal of cell biology 65(1) (1994) 49-59.
[49] Y. AGRAWAL, T. VANHA‐PERTTULA, Electron microscopic study of the secretion process in bovine reproductive organs, Journal of andrology 9(5) (1988) 307-316.
[50] L. HERMO, H.I. ADAMALI, S. ANDONIAN, Immunolocalization of CA II and H+ V‐ATPase in epithelial cells of the mouse and rat epididymis, Journal of andrology 21(3) (2000) 376-391.
[51] H.O. Goyal, Morphology of the bovine epididymis, American Journal of Anatomy 172(2) (1985) 155-172.
[52] B.T.H. Bernard Robaire, 2 and Marie-Claire Orgebin-Crist3, Chapter22 The epididymis, 2006.
[53] D. Brooks, Epididymal functions and their hormonal regulation, Australian journal of biological sciences 36(3) (1983) 205-222.
[54] S. Sujarit, R. Jones, B. Setchell, G. Chaturapanich, M. Lin, J. Clulow, Stimulation of protein secretion in the initial segment of the rat epididymis by fluid from the ram rete testis, Reproduction 88(1) (1990) 315-321.
[55] J.T.M. Vreeburg, DISTRIBUTION OF TESTOSTERONE AND 5α-DIHYDRO-TESTOSTERONE IN RAT EPIDIDYMIS AND THEIR CONCENTRATIONS IN EFFERENT DUCT FLUID, Journal of Endocrinology 67(2) (1975) 203-210.
[56] N. Ezer, B. Robaire, Androgenic regulation of the structure and functions of the epididymis, The epididymis: from molecules to clinical practice, Springer2002, pp. 297-316.
[57] D. Brooks, Effect of androgens on protein synthesis and secretion in various regions of the rat epididymis, as analysed by two-dimensional gel electrophoresis, Molecular and cellular endocrinology 29(3) (1983) 255-270.
[58] E. Castellon, C. Huidobro, Androgen regulation of glycosidase secretion in epithelial cell cultures from human epididymis, Human Reproduction 14(6) (1999) 1522-1527.
[59] R. Jones, C. Brown, K. Von Glos, M. Parker, Hormonal regulation of protein synthesis in the rat epididymis. Characterization of androgen-dependent and testicular fluid-dependent proteins, Biochemical Journal 188(3) (1980) 667-676.
[60] J.E. Garrett, S.H. Garrett, J. Douglass, A spermatozoa-associated factor regulates proenkephalin gene expression in the rat epididymis, Molecular Endocrinology 4(1) (1990) 108-118.
[61] C. Reyes‐Moreno, J. Laflamme, G. Frenette, M.A. Sirard, R. Sullivan, Spermatozoa modulate epididymal cell proliferation and protein secretion in vitro, Molecular Reproduction and Development: Incorporating Gamete Research 75(3) (2008) 512-520.
[62] S. Skerget, M.A. Rosenow, K. Petritis, T.L. Karr, Sperm proteome maturation in the mouse epididymis, PLoS One 10(11) (2015) e0140650.
[63] A.-J. Liang, G.-S. Wang, P. Ping, S.-G. Hu, Y. Lin, Y. Ma, Z.-Z. Duan, H.-S. Wang, F. Sun, The expression of the new epididymal luminal protein of PDZ domain containing 1 is decreased in asthenozoospermia, Asian journal of andrology 20(2) (2018) 154.
[64] G. Bindea, B. Mlecnik, H. Hackl, P. Charoentong, M. Tosolini, A. Kirilovsky, W.-H. Fridman, F. Pagès, Z. Trajanoski, J. Galon, ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks, Bioinformatics 25(8) (2009) 1091-1093.
[65] E.A. Castellón, C.C. Huidobro, Androgen regulation of glycosidase secretion in epithelial cell cultures from human epididymis, Human Reproduction 14(6) (1999) 1522-1527.
[66] T.G. Cooper, The epididymis, sperm maturation and fertilisation, Springer Science & Business Media2012.
[67] R. Shabanowitz, G. Killian, Two-dimensional electrophoresis of proteins in principal cells, spermatozoa, and fluid associated with the rat epididymis, Biology of reproduction 36(3) (1987) 753-768.
[68] C.J. Flickinger, Regional differences in synthesis, intracellular transport, and secretion of protein in the mouse epididymis, Biology of reproduction 25(4) (1981) 871-883.
[69] J. Dacheux, F. Dacheux, M. Paquignon, Changes in sperm surface membrane and luminal protein fluid content during epididymal transit in the boar, Biology of reproduction 40(3) (1989) 635-651.
[70] P. Ross, F.W. Kan, P. Antaki, N. Vigneault, A. Chapdelaine, K.D. Roberts, Protein synthesis and secretion in the human epididymis and immunoreactivity with sperm antibodies, Molecular reproduction and development 26(1) (1990) 12-23.
[71] B.T. Hinton, M.A. Palladino, Epididymal epithelium: its contribution to the formation of a luminal fluid microenvironment, Microscopy research and technique 30(1) (1995) 67-81.
[72] P. Syntin, J.-L. Dacheux, F.o. Dacheux, Postnatal development and regulation of proteins secreted in the boar epididymis, Biology of reproduction 61(6) (1999) 1622-1635.
[73] A. Abou‐Haila, M. Fain‐Maurel, Postnatal differentiation of the enzymatic activity of the mouse epididymis, International journal of andrology 8(6) (1985) 441-458.
[74] H. Ueda, T. Hirano, S. Fujimoto, Changes in protein secretory patterns during the development of the rat epididymis, Zoological science 7(4) (1990) p681-690.
[75] M. Orgebin-Crist, B. Danzo, J. Davies, Endocrine control of the development and maintenance of sperm fertilizing ability in the epididymis, (1975).
[76] D. Brooks, Metabolic activity in the epididymis and its regulation by androgens, Physiological reviews 61(3) (1981) 515-555.
[77] M.K. HOLLAND, J.T. VREEBURG, M.C. ORGEBIN‐CRIST, Testicular regulation of epididymal protein secretion, Journal of andrology 13(3) (1992) 266-273.
[78] C. Jean‐Faucher, M. Berger, M. de Turckheim, G. Veyssiere, C. Jean, Testosterone and dihydrotestosterone levels in the epididymis, vas deferens and preputial gland of mice during sexual maturation, International journal of andrology 8(1) (1985) 44-57.
[79] B. Robaire, M. Hamzeh, Androgen action in the epididymis, Journal of andrology 32(6) (2011) 592-599.
[80] M. Bendahmane, A. Abou‐Haila, Synthesis, characterization and hormonal regulation of epididymal proteins during postnatal development of the mouse, Differentiation 55(2) (1994) 119-125.
[81] F.C. Janca, L.K. Jost, D.P. Evenson, Mouse testicular and sperm cell development characterized from birth to adulthood by dual parameter flow cytometry, Biology of reproduction 34(4) (1986) 613-623.
[82] P. Sipilä, R. Shariatmadari, I.T. Huhtaniemi, M. Poutanen, Immortalization of epididymal epithelium in transgenic mice expressing simian virus 40 T antigen: characterization of cell lines and regulation of the polyoma enhancer activator 3, Endocrinology 145(1) (2004) 437-446.
[83] Y. ARAKI, K. SUZUKI, R.J. MATUSIK, M. OBINATA, M.C. ORGEBIN‐CRIST, Immortalized epididymal cell lines from transgenic mice overexpressing temperature‐sensitive simian virus 40 large T‐antigen gene, Journal of andrology 23(6) (2002) 854-869.
[84] P. Seiler, T.G. Cooper, E. Nieschlag, Sperm number and condition affect the number of basal cells and their expression of macrophage antigen in the murine epididymis, International journal of andrology 23(2) (2000) 65-76.
[85] J.E. Ellington, D.P. Evenson, J.E. Fleming, R.S. Brisbois, G.A. Hiss, S.J. Broder, R.W. Wright Jr, Coculture of human sperm with bovine oviduct epithelial cells decreases sperm chromatin structural changes seen during culture in media alone, Fertility and sterility 69(4) (1998) 643-649.
[86] R.-C. Chian, M.-A. Sirard, Fertilizing ability of bovine spermatozoa cocultured with oviduct epithelial cells, Biology of reproduction 52(1) (1995) 156-162.
[87] M.E. Kervancioglu, E. Saridogan, R.J. Aitken, O. Djahanbakhch, Importance of sperm-to-epithelial cell contact for the capacitation of human spermatozoa in fallopian tube epithelial cell cocultures, Fertility and sterility 74(4) (2000) 780-784.
[88] A.E. Elweza, M.A. Ezz, T.J. Acosta, A.K. Talukder, T. Shimizu, H. Hayakawa, M. Shimada, K. Imakawa, A.H. Zaghloul, A. Miyamoto, A proinflammatory response of bovine endometrial epithelial cells to active sperm in vitro, Molecular reproduction and development 85(3) (2018) 215-226.
[89] G.R. Klinefelter, A novel system for the co-culture of epididymal epithelial cells and sperm from adult rats, Journal of tissue culture methods 14(4) (1992) 195-200.
[90] M. Yeste, W.V. Holt, S. Bonet, J.E. Rodríguez‐Gil, R.E. Lloyd, Viable and morphologically normal boar spermatozoa alter the expression of heat‐shock protein genes in oviductal epithelial cells during co‐culture in vitro, Molecular reproduction and development 81(9) (2014) 805-819.
[91] N. Saraswathy, P. Ramalingam, 10 - Introduction to proteomics, in: N. Saraswathy, P. Ramalingam (Eds.), Concepts and Techniques in Genomics and Proteomics, Woodhead Publishing2011, pp. 147-158.
[92] T.E. Angel, U.K. Aryal, S.M. Hengel, E.S. Baker, R.T. Kelly, E.W. Robinson, R.D. Smith, Mass spectrometry-based proteomics: existing capabilities and future directions, Chemical Society Reviews 41(10) (2012) 3912-3928.
[93] E.R. Wasbrough, S. Dorus, S. Hester, J. Howard-Murkin, K. Lilley, E. Wilkin, A. Polpitiya, K. Petritis, T.L. Karr, The Drosophila melanogaster sperm proteome-II (DmSP-II), Journal of proteomics 73(11) (2010) 2171-2185.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7142-
dc.description.abstract哺乳類動物的精子經由睪丸製造釋出後尚未完全成熟,精子要在副睪中進行不同形式與程度的蛋白質轉譯後修飾才會獲得完整的受孕能力與活動力,眾多修飾過程中,雙硫鍵催化過程對於精子的蛋白質結構穩定和頭部染色體濃縮扮演著很重要的角色。過去我們實驗室之前透過蛋白質鑑定,找到了一個參與雙硫鍵催化過程的關鍵蛋白質: 第一型精漿蛋⽩硫氫氧化(quiescin sulfhydryl oxidase 1, QSOX1),並且發現此蛋白質在副睪的不同區段 (前、中、後) 有不同的含量,此外,也發現此蛋白質可附著於副睪前端精子的頂體區域,然而此蛋白質在精子成熟過程中扮演的角色尚未被完全瞭解。
本論文希望藉由探討QSOX1的分泌調控機制,讓我們更加了解此蛋白在副睪中的特性,進而在未來能進一步探討QSOX1在精子成熟過程中的所扮演的角色。透過西方墨點法及免疫螢光染⾊法,我們發現QSOX1的分泌在30天大的小鼠副睪中有顯著的上升, 此結果說明調控此蛋白質分泌的機制可能是透過體內睪固酮的增加或是透過副睪管腔中精子的刺激而導致,藉由二維共培養系統的建立,我們進一步測試上述兩個者對QSOX1的分泌是否具有影響,結果顯示,加入睪固酮對於QSOX1的分泌並沒有顯著的影響,而在精子共培養的組別中,培養液中的QSOX1有顯著性的增加。此外,相較於副睪後段較成熟的精子,副睪前端的精子能更有效的刺激QSOX1的分泌。透過高效液相層析串聯質譜儀分析和比較蛋白質體分析,我們進一步從培養液中鑑定出額外的582個分泌型蛋白質,推測其中的一些 (258個)蛋白質可能由精子釋放並刺激QSOX1的分泌。
綜合以上結果,QSOX1的分泌主要是經由精子的刺激而不是由睪固酮,但其作用分子與機制與切確的刺激因子為何有待進一步的研究。
zh_TW
dc.description.abstractSpermatozoa are not fully mature after being released from the testis. They gradually become mature and acquire the capacity for progressive motility and fertilization ability through post-translational modifications that occur in different segments of the epididymis. Among these modifications, disulfide bond formation is essential for sperm protein and structure stability, including chromatin condensation, sperm midpiece, and tail stabilization. The quiescin sulfhydryl oxidase 1 (QSOX1), which catalyzes the thiol-oxidation reaction has been identified in the epididymis. We have demonstrated that QSOX1 exhibits a region-specific distribution in the epididymis, and appears at the acrosome region of the caput sperm. However, the functional role and the regulation of QSOX1 secretion in the epididymis are still unknown.
This thesis focuses on the understanding of secretory regulation of QSOX1 in the epididymis. Through Western blotting and indirect immunofluorescent studies, we showed that mouse secretory QSOX1 was upregulated at postnatal day 30, suggesting the potential involvement of testosterone and/or sperm cells on the regulation and stimulation of QSOX1 secretion. To closely mimic in vivo situation, we set up a 2D polarized co-culture system to investigate the effects of these stimuli and to measure the level of QSOX1 secretion in vitro. Our data showed that QSOX1 secretion was increased after co-incubating with sperm cells (especially in caput sperm cells) but not when co-incubating with testosterone or its metabolites, DHT. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and comparing proteome analysis were used to identify and characterize the possible regulatory molecules that were being released from sperm. We identified 582 secretory proteins that were exclusively present in the sperm-enriched group and further categorized 258 caput sperm proteins that might be responsible for stimulating QSOX1 secretion in the epididymis.
In conclusion, our study provides solid evidence that QSOX1 secretion is likely regulated by sperm-epididymis epithelium interaction rather than by testosterone stimulation. This result may further explain the role of QSOX1 upon sperm maturation.
en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:39:47Z (GMT). No. of bitstreams: 1
ntu-108-R06629007-1.pdf: 2722112 bytes, checksum: 33ef3424a59d7757b2b56ff65008a883 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝(i)
中文摘要(ii)
Abstract(iii)
Content(v)
List of Figures(viii)
List of Tables(x)
CHAPTER1 Introduction(- 1 -)
1.1. Interactions between spermatozoa and the epididymis(- 1 -)
1.2. The importance of disulfide bond formation during sperm transit in the epididymis(- 2 -)
1.2.1. Membrane modification(- 3 -)
1.2.2. Nucleus stabilization(- 4 -)
1.3. Introduction of QSOX1 protein(- 5 -)
1.3.1. QSOX1 variants(- 6 -)
1.3.2. QSOX1 in the epididymis and its relationship with sperm(- 7 -)
1.4. Protein secretion in the epididymis(- 9 -)
1.4.1. Different secretory pathways(- 9 -)
1.4.2. Potential regulation mechanisms for epididymal protein secretion(- 11 -)
1.4.2.1. Testicular regulation(- 11 -)
1.4.2.2. Androgen regulation(- 12 -)
1.4.2.3. Spermatozoa regulation(- 12 -)
1.5. Aim of this thesis(- 14 -)
CHAPTER 2 Materials and methods(- 15 -)
2.1. Animals(- 15 -)
2.2. Tissue and protein sample preparation(- 15 -)
2.3. Stable cell line culture(- 17 -)
2.4. Immunofluorescent staining(- 18 -)
2.5. Electrophoresis, SDS-PAGE, and Western blotting(- 19 -)
2.6. Human QSOX1-eGFP plasmid construction(- 20 -)
2.7. In vitro hormone treatment assays and cell-spermatozoa co-culture assays(- 21 -)
2.7.1. Cell transfection(- 21 -)
2.7.2. Establishment of in vitro co-culture system(- 22 -)
2.7.3. Androgen treatment assays(- 23 -)
2.7.4. Animal preparation and acquisition of epididymal spermatozoa(- 23 -)
2.8. Proteomics analyses(- 24 -)
2.8.1. Sample preparation(- 24 -)
2.8.2. In-soluble digestion of proteins / MS analysis(- 25 -)
2.8.3. Gene ontology (GO) analysis and network analysis(- 26 -)
CHAPTER 3 Results(- 27 -)
3.1 Post-natal QSOX1 protein expression and secretion in the epididymis.(- 27 -)
3.2 Successful QSOX1 overexpression system established for co-culture model.(- 30 -)
3.3 In vitro co-culture system revealed regulatory stimulus for QSOX1 secretory.(- 32 -)
3.3.1 Androgen showed little effects on QSOX1 secretion in epididymal epithelium cells(- 34 -)
3.3.2 Spermatozoa facilitate QSOX1 secretion(- 37 -)
3.4 Spermatogenesis defect (Elp1-/-) mouse showed low level of epididymal QSOX1 protein expression.(- 43 -)
3.5 Proteomic analysis(- 45 -)
Chapter 4. Discussion(- 52 -)
Reference(- 61 -)
-
dc.language.isoen-
dc.subject副睪蛋白質分泌zh_TW
dc.subject蛋白質體學分析zh_TW
dc.subject精子共培養系統zh_TW
dc.subject精漿蛋白硫氫氧化?1zh_TW
dc.subjectproteome analysisen
dc.subjectsperm co-cultureen
dc.subjectQSOX1en
dc.subjectepididymal protein secretionen
dc.title探討副睪中第一型硫氫氧化酶的分泌調控機制zh_TW
dc.titleInvestigation of the Regulatory Mechanism of Epididymal Quiescin Q6 Sulfhydryl Oxidase 1 Protein Secretionen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李勝祥;林甫容;張惠雯zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keyword副睪蛋白質分泌,精漿蛋白硫氫氧化?1,精子共培養系統,蛋白質體學分析,zh_TW
dc.subject.keywordepididymal protein secretion,QSOX1,sperm co-culture,proteome analysis,en
dc.relation.page73-
dc.identifier.doi10.6342/NTU201903813-
dc.rights.note未授權-
dc.date.accepted2019-08-16-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept獸醫學系-
dc.date.embargo-lift2024-08-23-
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
2.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved